
Our way to TechEmpower
wins in .NET 5

Adam Sitnik

.NET 5

https://devdiv.visualstudio.com/DevDiv/_wiki/wikis/DevDiv.wiki/6748/NET-5-Framing-Memo

https://devdiv.visualstudio.com/DevDiv/_wiki/wikis/DevDiv.wiki/6748/NET-5-Framing-Memo

Benchmarks Specifications

https://github.com/TechEmpower/FrameworkBenchmarks/wiki/Project-Information-Framework-Tests-Overview#test-types

https://github.com/TechEmpower/FrameworkBenchmarks/wiki/Project-Information-Framework-Tests-Overview#test-types

Plaintext

Middleware Platform

JSON

Single Query

Multiple Queries

Caching

Updates

Fortunes

Benchmarks: Summary

• Logic common to every benchmark:
• request header parsing
• request routing
• response header generation

• Logic common to every DB benchmark:
• database connection pool
• random number generation
• object-relational mapper (ORM)

• Only two benchmarks don’t serialize output to JSON

• Utf8 everywhere

• Platform benchmarks are more optimal but also very hacky

Round 18 (July 2019, .NET Core 3.1): JSON

https://www.techempower.com/benchmarks/#section=data-r18&hw=ph&test=json

+ 36% boost needed

https://www.techempower.com/benchmarks/#section=data-r18&hw=ph&test=json

Round 18 (July 2019, .NET Core 3.1): Fortunes

https://www.techempower.com/benchmarks/#section=data-r18&hw=ph&test=json

+ 2.5% boost needed

https://www.techempower.com/benchmarks/#section=data-r18&hw=ph&test=json

Round 19 (February 2020, .NET Core 3.1): JSON

https://www.techempower.com/benchmarks/#section=data-r19&hw=ph&test=json

+ 32.3% boost needed

https://www.techempower.com/benchmarks/#section=data-r19&hw=ph&test=json

Round 19 (February 2020, .NET Core 3.1): Fortunes

https://www.techempower.com/benchmarks/#section=data-r19&hw=ph&test=fortune

+ 31.2% boost needed

https://www.techempower.com/benchmarks/#section=data-r19&hw=ph&test=fortune

Measure, Measure, Measure

How to run the benchmarks?

• Sébastien Ros Modern BCL talk: https://msit.microsoftstream.com/video/95878f4d-6e5b-4655-850e-5056fe92f119

• Doc: https://github.com/aspnet/Benchmarks/blob/master/scenarios/README.md

dotnet tool install Microsoft.Crank.Controller --version "0.1.0-*" –global

crank --config https://raw.githubusercontent.com/aspnet/Benchmarks/master/scenarios/platform.benchmarks.yml

--scenario plaintext --profile aspnet-citrine-lin

To profile and get a trace file: --application.collect true

To use given .dll in the publish app: --application.options.outputFiles $pathToFile.dll

https://msit.microsoftstream.com/video/95878f4d-6e5b-4655-850e-5056fe92f119
https://github.com/aspnet/Benchmarks/blob/master/scenarios/README.md

Alternative: run them locally

• git clone https://github.com/aspnet/Benchmarks.git

• Start the web server:
• cd Benchmarks/src/BenchmarksApps/Kestrel/PlatformBenchmarks

• dotnet run -c Release

• You can publish a self-contained version and replace *.dll files if you want to test your local changes

• Start the HTTP benchmarking tool:
• cd Benchmarks/src/WrkClient

• chmod +x wrk

• ./wrk -c 1 http://127.0.0.1:8080/plaintext -d 1m -t 1 --header
"Accept:text/plain,text/html;q=0.9,application/xhtml+xml;q=0.9,application/xml;q=0.8,*/*;q=0.7" -s scripts/pipeline.lua – 16

• (it’s a sample command, don’t forget to change the number of connections, duration and thread count)

• The magic header value comes from wrk.yml

https://github.com/aspnet/Benchmarks.git
https://github.com/aspnet/Benchmarks/blob/777fef3260cc117a302e150494030f4fcc90cb85/src/WrkClient/wrk.yml#L4-L6

The beginning of a performance investigation

Maybe Flame Graph can tell us something?

What if we fold All Threads?

Can we use Concurrency Visualizer?

Is there any other tool that we could use?

https://github.com/dotnet/diagnostics/issues/447 https://github.com/microsoft/perfview/pull/1113

https://github.com/dotnet/diagnostics/issues/447
https://github.com/microsoft/perfview/pull/1113

How to use it?

PerfView Chromium

Much better Overview!

Is GC a problem? No.

Why do we have few threads that are not 100% active?

What is epoll?

https://jvns.ca/blog/2017/06/03/async-io-on-linux--select--poll--and-epoll/

https://jvns.ca/blog/2017/06/03/async-io-on-linux--select--poll--and-epoll/

Side note: People don’t like epoll

https://youtu.be/l6XQUciI-Sc?t=3429

https://youtu.be/l6XQUciI-Sc?t=3429

“The Linux Programming Interface” book

Reducing the epoll threads to 1

#2346: 1 epoll thread per 1024 connections

https://github.com/dotnet/runtime/pull/2346

https://github.com/dotnet/runtime/pull/2346

#19396: Add SocketTransportOption to
enable/disable WaitForData

https://github.com/dotnet/aspnetcore/pull/19396

https://github.com/dotnet/aspnetcore/pull/19396

It was not that simple…

https://github.com/dotnet/runtime/pull/33855 - revert of 1 epoll thread per 1024 connections

https://github.com/dotnet/runtime/pull/33855

Why the Platform benchmark has regressed?

Kount has provided an excellent explanation

https://github.com/dotnet/runtime/issues/33669#issuecomment-601459220

https://github.com/dotnet/runtime/issues/33669#issuecomment-601459220

Which started a discussion

https://github.com/dotnet/runtime/issues/33669#issuecomment-601675592

https://github.com/dotnet/runtime/issues/33669#issuecomment-601675592

#20518: Is it possible to tune request parsing any further?

https://github.com/dotnet/aspnetcore/issues/20518

https://github.com/dotnet/aspnetcore/issues/20518

#20885: Make HTTP/1.1 startline parsing "safe"

https://github.com/dotnet/aspnetcore/pull/20885

https://github.com/dotnet/aspnetcore/pull/20885

#35330: Parallelize epoll events on thread
pool and process events in the same thread

https://github.com/dotnet/runtime/pull/35330

https://github.com/dotnet/runtime/pull/35330

Big wins!

https://github.com/dotnet/runtime/pull/35330#issuecomment-622306651

https://github.com/dotnet/runtime/pull/35330#issuecomment-622306651

2nd PR: Single epoll thread per 28 cores

https://github.com/dotnet/runtime/pull/35800/

https://github.com/dotnet/runtime/pull/35800/

How to read the results

#36371: Try using socket syscalls that accepts
a single buffer to improve performance

https://github.com/dotnet/runtime/pull/36371

recvmsg -> recv
sendmsg -> send

https://github.com/dotnet/runtime/pull/36371

#36635: Is it possible to optimize JSON serialization any further?

https://github.com/dotnet/runtime/issues/36635

https://github.com/dotnet/runtime/issues/36635

#1519: try Suggestion from Stephen and use Write methods directly

https://github.com/aspnet/Benchmarks/pull/1519

https://github.com/aspnet/Benchmarks/pull/1519

#1520: Cache
Utf8JsonWriter

https://github.com/aspnet/Benchmarks/pull/1520

https://github.com/aspnet/Benchmarks/pull/1520

#1547: DB Platform benchmarks microoptimizations

https://github.com/aspnet/Benchmarks/pull/1547

https://github.com/aspnet/Benchmarks/pull/1547

#37976: Perf improvements for small or value-type POCOs

https://github.com/dotnet/runtime/pull/37976

https://github.com/dotnet/runtime/pull/37976

Many JSON microbenchmarks have improved!

https://pvscmdupload.blob.core.windows.net/reports/allTestHistory%2frefs%2fheads%2fmaster_x64_Window
s%2010.0.18362%2fSystem.Text.Json.Serialization.Tests.WriteJson(Location).SerializeToStream.html

https://pvscmdupload.blob.core.windows.net/reports/allTestHistory%2frefs%2fheads%2fmaster_x64_Windows%2010.0.18362%2fSystem.Text.Json.Serialization.Tests.WriteJson(Location).SerializeToStream.html
https://pvscmdupload.blob.core.windows.net/reports/allTestHistory%2frefs%2fheads%2fmaster_x64_Windows%2010.0.18362%2fSystem.Text.Json.Serialization.Tests.WriteJson(Location).SerializeToStream.html

June 2020: we have met the goals!

#2933: Multiplexing

https://github.com/npgsql/npgsql/pull/2993

https://github.com/npgsql/npgsql/pull/2993

#1553: Update platform benchmarks to Npgsql 5.0.0-alpha1

https://github.com/aspnet/Benchmarks/pull/1553

https://github.com/aspnet/Benchmarks/pull/1553

Multiplexing: +59k RPS for Fortunes

The Composite Score

https://github.com/TechEmpower/FrameworkBenchmarks/wiki/TechEmpower-Performance-Rating-(TPR)#scoring-algorithm

https://github.com/TechEmpower/FrameworkBenchmarks/wiki/TechEmpower-Performance-Rating-(TPR)#scoring-algorithm

“That's insane. 50% improvement from doing
nothing except upgrading .NET”

https://twitter.com/nbevans/status/1309135751267987459

https://twitter.com/nbevans/status/1309135751267987459

Not covered

• Multiplexing: https://github.com/npgsql/npgsql/pull/2993

• The Big Experiment: https://github.com/tmds/Tmds.LinuxAsync/

• The things that did not improve perf: AIO & io_uring:
• https://github.com/dotnet/runtime/pull/36980 - AIO
• https://github.com/dotnet/runtime/pull/38747 - reduce syscalls
• https://github.com/axboe/liburing/issues/97 - io_uring

• The scenarios where the performance is far from perfect:
• The “Mono” machine with 56 Cores: 1/3 -> 2/3
• The AMD machine: low RPS despite powerful hardware
• The ARM machine – we don’t know how our competitors perform on ARM
• Updates benchmark - +-30% time spent on waiting for a lock to be released*

https://github.com/npgsql/npgsql/pull/2993
https://github.com/tmds/Tmds.LinuxAsync/
https://github.com/dotnet/runtime/pull/36980
https://github.com/dotnet/runtime/pull/38747
https://github.com/axboe/liburing/issues/97

Questions?

Thank You!

	Slide 1: Our way to TechEmpower wins in .NET 5
	Slide 2: .NET 5
	Slide 3: Benchmarks Specifications
	Slide 4: Plaintext
	Slide 5: JSON
	Slide 6: Single Query
	Slide 7: Multiple Queries
	Slide 8: Caching
	Slide 9: Updates
	Slide 10: Fortunes
	Slide 11: Benchmarks: Summary
	Slide 12: Round 18 (July 2019, .NET Core 3.1): JSON
	Slide 13: Round 18 (July 2019, .NET Core 3.1): Fortunes
	Slide 14: Round 19 (February 2020, .NET Core 3.1): JSON
	Slide 15: Round 19 (February 2020, .NET Core 3.1): Fortunes
	Slide 16: Measure, Measure, Measure
	Slide 17: How to run the benchmarks?
	Slide 18: Alternative: run them locally
	Slide 19: The beginning of a performance investigation
	Slide 20: Maybe Flame Graph can tell us something?
	Slide 21: What if we fold All Threads?
	Slide 22: Can we use Concurrency Visualizer?
	Slide 23: Is there any other tool that we could use?
	Slide 24: How to use it?
	Slide 25: Much better Overview!
	Slide 26: Is GC a problem? No.
	Slide 27: Why do we have few threads that are not 100% active?
	Slide 28: What is epoll?
	Slide 29: Side note: People don’t like epoll
	Slide 30: “The Linux Programming Interface” book
	Slide 31: Reducing the epoll threads to 1
	Slide 32: #2346: 1 epoll thread per 1024 connections
	Slide 33: #19396: Add SocketTransportOption to enable/disable WaitForData
	Slide 34: It was not that simple…
	Slide 35: Why the Platform benchmark has regressed?
	Slide 36: Kount has provided an excellent explanation
	Slide 37: Which started a discussion
	Slide 38: #20518: Is it possible to tune request parsing any further?
	Slide 39: #20885: Make HTTP/1.1 startline parsing "safe"
	Slide 40: #35330: Parallelize epoll events on thread pool and process events in the same thread
	Slide 41: Big wins!
	Slide 42: 2nd PR: Single epoll thread per 28 cores
	Slide 43: How to read the results
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: #36371: Try using socket syscalls that accepts a single buffer to improve performance
	Slide 49: #36635: Is it possible to optimize JSON serialization any further?
	Slide 50: #1519: try Suggestion from Stephen and use Write methods directly
	Slide 51
	Slide 52: #1520: Cache Utf8JsonWriter
	Slide 53: #1547: DB Platform benchmarks microoptimizations
	Slide 54: #37976: Perf improvements for small or value-type POCOs
	Slide 55: Many JSON microbenchmarks have improved!
	Slide 56: June 2020: we have met the goals!
	Slide 57: #2933: Multiplexing
	Slide 58: #1553: Update platform benchmarks to Npgsql 5.0.0-alpha1
	Slide 59: Multiplexing: +59k RPS for Fortunes
	Slide 60: The Composite Score
	Slide 61: “That's insane. 50% improvement from doing nothing except upgrading .NET”
	Slide 62: Not covered
	Slide 63: Questions?
	Slide 64: Thank You!

