Our way to TechEmpower
wins in .NET 5

Adam Sitnik

NET 5

Scenario: .NET 5 has excellent fundamentals

In our scope of fundamentals, we are including reliability, performance, diagnosabillity,
compliance, security, acquisition and deployment. We will continue to deliver across these
areas in .NET 5. The following list does not cover all of the things we intend to get done,
but highlight some key deliverables in this space

1. Attain top 10 status for the Fortunes benchmark, and outcompete Netty (Java) on
JSON serialization

https://devdiv.visualstudio.com/DevDiv/ wiki/wikis/DevDiv.wiki/6748/NET-5-Framing-Memo

https://devdiv.visualstudio.com/DevDiv/_wiki/wikis/DevDiv.wiki/6748/NET-5-Framing-Memo

Benchmarks Specifications

JSON Serialization: Exercises the framework fundamentals including keep-alive support, request routing, request header

parsing, object instantiation, JSON serialization, response header generation, and request count throughput.

Single Database Query: Exercises the framework's object-relational mapper (ORM), random number generator, database
driver, and database connection pool.

Multiple Database Queries: A variation of Test #2 and also uses the World table. Multiple rows are fetched to more
dramatically punish the database driver and connection pool. At the highest queries-per-request tested (20), this test
demonstrates all frameworks' convergence toward zero requests-per-second as database activity increases.

Fortunes: Exercises the ORM, database connectivity, dynamic-size collections, sorting, server-side templates, XSS
countermeasures, and character encoding.

Database Updates: A variation of Test #3 that exercises the ORM's persistence of objects and the database driver's
performance at running UPDATE statements or similar. The spirit of this test is to exercise a variable number of read-then-
write style database operations.

Plaintext: An exercise of the request-routing fundamentals only, designed to demonstrate the capacity of high-
performance platforms in particular. Requests will be sent using HTTP pipelining. The response payload is still small,
meaning good performance is still necessary in order to saturate the gigabit Ethernet of the test environment.

Caching: Exercises the platform or framework's in-memory caching of information sourced from a database. For
implementation simplicity, the requirements are very similar to the multiple database query test (Test #3), but use a
separate database table and are fairly generous/forgiving, allowing for each platform or framework's best practices to be
applied.

https://github.com/TechEmpower/FrameworkBenchmarks/wiki/Project-Information-Framework-Tests-Overview#test-types

https://github.com/TechEmpower/FrameworkBenchmarks/wiki/Project-Information-Framework-Tests-Overview#test-types

Plaintext

Middleware

public class PlaintextMiddleware

{
private static readonly PathString _path = new PathString(Scenarios.GetPath(s => s.Plaintext));
private static readonly byte[] _helloWorldPayload = Encoding.UTF8.GetBytes("Hello, World!");
private readonly RequestDelegate _next;
public PlaintextMiddleware(RequestDelegate next) => _next = next;
public Task Invoke(HttpContext httpContext)
{
if (httpContext.Request.Path.StartsWithSegments(_path, StringComparison.Ordinal))
{
return WriteResponse(httpContext.Response);
}
return _next(httpContext);
}
public static Task WriteResponse(HttpResponse response)
{
var payloadlLength = _helloWorldPayload.Length;
response.StatusCode = 200;
response.ContentType = "text/plain”;
response.ContentLength = payloadlLength;
return response.Body.WriteAsync(_helloWorldPayload, ©, payloadlLength);
}
}
public static class PlaintextMiddlewareExtensions
{
public static IApplicationBuilder UsePlainText(this IApplicationBuilder builder)
{
return builder.UseMiddleware<PlaintextMiddleware>();
}

Platform

private readonly static AsciiString _plainTextBody = "Hello, World!";

private readonly static AsciiString _plaintextPreamble =
_httpllOK +
_headerServer + _crlf +
_headerContentTypeText + _crlf +
_headerContentLength + plainTextBody.Length.ToString();

private static void PlainText(ref BufferWriter<WriterAdapter> writer)

{

writer.Write(_plaintextPreamble);

// Date header
writer.Write(DateHeader.HeaderBytes);

// Body
writer.Write(_plainTextBody);

JSON

private readonly static uint _jsonPayloadSize
= (uint)JsonSerializer.SerializeToUtf8Bytes(new JsonMessage { message = "Hello, World!" }, SerializerOptions).Length;

private readonly static AsciiString _jsonPreamble =
_httpll0OK +
_headerServer + _crlf +
_headerContentTypelson + _crlf +
_headerContentLength + _jsonPayloadSize.ToString();

private static void Json(ref BufferWriter<WriterAdapter> writer, IBufferWriter<byte> bodyWriter)
{

writer.Write(_jsonPreamble);

// Date header
writer.Write(DateHeader.HeaderBytes);

writer.Commit();

Utf8JsonWriter utf8JsonWriter = t_writer ??= new Utf8JsonWriter(bodyWriter, new JsonWriterOptions { SkipValidation = true });
utf8JsonWriter.Reset(bodyWriter);

// Body
JsonSerializer.Serialize (utf8JsonWriter, new JsonMessage { message = "Hello, World!" }, SerializerOptions);

Single Query

var cmd = new NpgsqlCommand("SELECT id, randomnumber FROM world WHERE id = @Id", connection);
var parameter = new NpgsqglParameter<int>(parameterName: "@Id", value: _random.Next(1l, 10001));

private async Task 51 (PipeWriter pipeWriter) => OutputSingleQuery(pipeWriter, await Db.LoadSingleQueryRow());

private static void OutputSingleQuery(PipelWriter pipeWriter, World row)

{
var writer = GetWriter(pipeWriter, sizeHint: 18@); // in reality it's 158

writer.Write(_dbPreamble);

var lengthWriter = writer;
writer.Write(_contentlLengthGap);

// Date header
writer.Write(DateHeader.HeaderBytes);

writer.Commit();

Utf8JsonWriter utf8JsonWriter = t_writer ??= new Utf8JsonWriter(pipeWriter, new JsonWriterOptions { SkipValidation = true });
utf8JsonWriter.Reset(pipeWriter);

// Body
JsonSerializer.Serialize (utf8JsonWriter, row, SerializerOptions);

// Content-Length
lengthWriter.WriteNumeric((uint)utf8Isonkriter.BytesCommitted);

Multiple Queries

public async Task<World[]> LoadMultipleQueriesRows(int count)
{

var result = new World[count];

using (var db = new NpgsqglConnection(_connectionString))

{
await db.OpenAsync();

var (cmd, idParameter) = CreateReadCommand(db);
using (cmd)
{
for (int i = ©;
{

i < result.Length; i++)

result[i] = await ReadSingleRow(cmd);
idParameter.TypedValue = _random.Next(1l, 10001);

return result;

private async Task MultipleQueries(PipeWriter pipeWriter, int count)

=> OutputMultipleQueries(pipeWriter, await Db.LoadMultipleQueriesRows(count));

private static void OutputMultipleQueries(PipeWriter pipeWriter, World[] rows)

{

var writer = GetWriter(pipeWriter, sizeHint: 16@ * rows.Length); // in reality it's 152 for one
writer.Write(_dbPreamble);

var lengthWriter = writer;
writer.Write(_contentlLengthGap);

// Date header
writer.Write(DateHeader.HeaderBytes);

writer.Commit();

Utf8JsonWriter utf8JsonWriter = t_writer ??= new Utf8JsonWriter(pipeWriter, new JsonWriterOptions
utf8JsonWriter.Reset(pipeWriter);

// Body

JsonSerializer.Serialize (utf8JsonWriter, rows, SerializerOptions);

// Content-Length
lengthWriter.WriteNumeric((uint)utf8JsonWriter.BytesCommitted);

Caching

private readonly .MemoryCache _cache = new MemoryCache(
new MemoryCacheOptions()
{

ExpirationScanFrequency = TimeSpan.FromMinutes(6@)

1)

public Task<World[]> LoadCachedQueries(int count)
{

var result = new World[count];

var cacheKeys = _cacheKeys;

var cache = _cache;

var random random;
- rivate async Task PipeWriter pipeWriter, int count
for (var i = @; i < result.Length; i++) P Y (Pip pip ’)

{ {
var id = random.Next(1, 1@681); OutputMultipleQueries(pipeWriter, await Db.LoadCachedQueries(count));
var key = cacheKeys[id]; }
var data = cache.Get<CachedWorld>(key);

if (data != null)

{
result[i] = data;
}
else
{
return LoadUncachedQueries(id, i, count, this, result);
}

Updates

public async Task<World[]> LoadMultipleUpdatesRows(int count)
{

var results = new World[count];

using (var db = new NpgsqglConnection(_connectionString))

{ private async Task Up (PipeWriter pipeWriter, int count)
await db.OpenAsync(); => OutputUpdates(pipeWriter, await Db.LoadMultipleUpdatesRows(count));
. H
var (queryCmd, queryParameter) = CreateReadCommand(db); private static void OutputUpdates(PipeWriter pipeWriter, World[] rows)
using (queryCmd) {
var writer = GetWriter(pipeWriter, sizeHint: 120 * rows.lLength); // in reality it's 112 for one
for (int i = @; i < results.length; i++)
results[i] = await ReadSingleRow(queryCmd); writer.Write(_dbPreamble);
queryParameter.TypedValue = _random.Next(1l, 10801);
} var lengthWriter = writer;
} writer.Write(_contentLengthGap);
using (var updateCmd = new NpgsqlCommand(BatchUpdateString.Query(count), db)) // Date header
{ . . writer.Write(DateHeader.HeaderBytes);
var ids = BatchUpdateString.Ids;
var randoms = BatchUpdateString.Randoms; . ;
writer.Commit();
for (int 1 = @; 1 < results.lLength; i++)
{ Utf8JsonWriter utf8J)sonWriter = t_writer ??= new Utf8JsonWriter(pipeWriter, new JsonWriterOption
var randomNumber = _random.Next(1, 18ee1); utfg8JsonWriter.Reset(pipeWriter);
updateCmd.Parameters.Add(new NpgsqlParameter<int>(parameterName: ids[i], value: results[i].Id)); // Bod
updateCmd.Parameters.Add(new NpgsqlParameter<int>(parameterName: randoms[i], value: randomNumber)); y‘) L. . L. .
JsonSerializer.Serialize (utf8JsonWriter, rows, SerializerOptions);
results[i].RandomNumber = randomNumber;
} // Content-Length
lengthWriter.WriteNumeric((uint)utf8JsonhWriter.BytesCommitted);
await updateCmd.ExecuteNonQueryAsync(); }
}
}

return results;

Fortunes

private void OutputFortunes(PipeWriter pipeWriter, List<Fortune> model)

{
public async Task<List<Fortune>> LoadFortunesRows() var writer = GetWriter(pipeWriter, sizeHint: 16@@); // in reality it's 1361
{
var result = new List<Fortune>(20); writer.Write(_fortunesPreamble);
zsing (var db = new NpgsglConnection(_connectionString)) var lengthWriter = writer;
await db.OpenAsync(); writer.Write(_contentlLengthGap);
using (var cmd = new NpgsglCommand("SELECT id, message FROM fortune", db)) // Date header
using (var rdr = await cmd.ExecuteReaderAsync()) writer.Write(DateHeader.HeaderBytes);
{
while (await rdr.ReadAsync()) var bodyStart = writer.Buffered;
{ // Body
result.Add(new Fortune . .
(writer.Write(_fortunesTableStart);
id:rdr.GetInt32(0), foreach (var item in model)
message: rdr.GetString(1) {
))s writer.Write(_fortunesRowStart);
} writer.WriteNumeric((uint)item.Id);
} writer.Write(_fortunesColumn);
} writer.WriteUtf8String(HtmlEncoder.Encode(item.Message));
result.Add(new Fortune(id: @, message: "Additional fortune added at request time.")); writer.Write(_fortunesRowEnd);
result.Sort(); ¥
writer.Write(_fortunesTableEnd);
return result; lengthWriter.WriteNumeric((uint)(writer.Buffered - bodyStart));
¥

writer.Commit();

Benchmarks: Summary

* Logic common to every benchmark:
* request header parsing
* request routing
* response header generation

* Logic common to every DB benchmark:
* database connection pool
* random number generation
» object-relational mapper (ORM)

* Only two benchmarks don’t serialize output to JSON
e Utf8 everywhere
* Platform benchmarks are more optimal but also very hacky

Round 18 (July 2019, .NET Core 3.1): JSON

Declare Independence from Oppressive Performance Bottlenecks
S Y e S ——

Round 18 | Eierthe fresdom and

View additional commentary about Round 18 at aur blog.

Shawing 215 af 220 frameworks.

JSON serialization

Best o chart) Data abie

ik Framework
1 W50 0

L W finenio.

[——
> mateugo-prelork

52 marsugshon-oreirk

=1 m# spcoretex

2 moolesas

5 mawoole

 mblage

=5 misronta

Fr———
< mwarp-hasql

o mblae

< mfasche

s m® aspoare

https://www.techempower.com/benchmarks/#section=data-r18&hw=ph&test=json

Test types

Lataecy. Fraenewark craihead

Bast ISON responses par secand, Dall R440 Xean Gold = 10 B5E. (335 tests)

Bess perfarmance (nigher s betier)
1366569

1364155

1361588

1358508

1357738

1157168

1356789

1355558

1353782

135209
1351760

1350457

1350052

1343349
1346181

98.7%

5%

1341812

1335396
1335808

1333977
L33

133188

1328626
1327485

IR

1320710
117384

1313158

1306473
1298360

192709
1206433

1273862

1199387

158, 17— %
1151534

1147596 %
1144570 8%
119472 %

A —
e ———
T L — 5
1027713 7§,
025,31 3 —————— 5 0%
B L ———
LS I ————————— £ 9
1AL 848 | —— 1 5
L0144 ————————)%
TV ——————— T
AL | —)55
A2 1 —— .55
9917 7L0%

Hardware

Erors Cis Log Ph FE Aos 1A

HE
H

)
)

-
=
L !
=
L
=
e

|z

=
_

HHHE

2|5 5]e
HE

HELE
el |e
alaf

24 M netty

55md aspcore

1,322,192

969,717

+ 36% boost needed

https://www.techempower.com/benchmarks/#section=data-r18&hw=ph&test=json

Round 18 (July 2019, .NET Core 3.1): Fortunes

Rnk Framework
1 m<® actix-core
2 mD actix-pg
3 mh2o
4 M atreugo-prefork-quicktemplate

5 M vertx-postgres

6 M ulib-postgres

7 M greenlightning

8 M cpoll cppsp-raw

9 M atreugo-quicktemplate

10 m go-pgx-prefork-quicktemplate
11 W swoole
12 m9D aspcore-ado-pg

Best fortunes responses per second, Dell R440 Xeon Gold + 10 GbE (339 tests)

Best performance (higher is better)
702,165 [
632,672

456,058 | I 5.0 %

435,874 | T 2.1 %
403,232 | © T S 7.4 %
359,874 | N S5 1.3%
341,347 | ~ T 48.6%
326,149 NN 41.6.4%
319,256 | /.5 .5 %

308,337 | N 4 3.9 %

307,673 | N 4 3.8%

300,613 [42 .8%

Errors Cls Lng

Plt Rus

Mcr Rus

Plt C

Plt Go

Plt Jav

Plt C++

Mcr Jav

Plt C++

Plt Go

Plt Go

Plt PHP

1 Plt C#

+ 2.5% boost needed

https://www.techempower.com/benchmarks/#section=data-r18&hw=ph&test=json

https://www.techempower.com/benchmarks/#section=data-r18&hw=ph&test=json

Round 19 (February 2020, .NET Core 3.1): JSON

A totally unretated nineteern
Round 1§ | 5t oumsicral s o o e e o iw ppocasens ew n Amund 191 compes

T L ————— vt

1,197,

PO — S e pret |

e — [r—

JSON serialization

— — 70 <D aspcore :

e 1500 respnaas s aran, Oe 449 Keom Gl + 0 GHE (4111
frors @s g Pu FE ko ia

R
e e w
Fo rorl T
e
e e
o b
e 0
FEIEEs I OOSt Ilee e
B e . 0
e e e
e e i e
CaCWYyrw
e
Er s e
e - e
=
T
e g
L= e == BN
o e
o o h e
s e
~ o m e in
e
ECWYyra
A
M o
v e
i i
e
- e
-
ey
o=y

www.techempower.com/benchmarks/#section=data-r19&hw=ph&test=json

https://www.techempower.com/benchmarks/#section=data-r19&hw=ph&test=json

Round 19 (February 2020, .NET Core 3.1): Fortunes

Fortunes

Rnk Framework
1 l@Mon—core
2 m D actix-core
3 B9 actix-pg
4 m® drogon
5 W may-minihttp
6 mh2o
7 M lithium-postgres
8 m fasthttp-prefork-quicktemplate

9 M atreugo-prefork-quicktemplate
10 W hyper-db
11 m php-ngx-pgsql
12 W workerman-pgsgl

13 W vertx-postgres

14 W ulib-postgres

15 M fasthttp-quicktemplate
16 M atreugo-quicktemplate
17 m greenlightning

18 ™ jooby-pgclient

19 m fiber-prefork

20 m go-pgx-prefork-quicktemplate
21 M lithium

22 W workerman

25 W php-ngx-mysql

4 ud® aspcore-rhtx-pg

25 W swoole
26mP aspcore-ado-pg

https://www.techempower.com/benchmarks/#section=data-r19&hw=ph&test=fortune

Best performance (higher is better)

678,278
651,144
607,052
553,366
476,965
411,176
401,783
363,587
362,342
358,511
356,507
352,508
347,356
344,634
319,764
319,390
318,601
312,439
301,604
298,935
296,750
291,339
290,312
285,398
283,728
273,121

[©.0%
L 3.5 %
[T 3 1.6 %

[7 0.3 %
[0.6 %
[0.2 %
[T S 3.6 %
[T S 4%
[52 9%
[S .6%
[S 2.0%
[T G 1.2 %
[T 5 0.8%

| T 4 7.1%

| T 4 7.1%
[T 4 7.0%
[T 4 5.1%
| 44.5%
[T 44.1%
[T 43.8 %
[T 43.0%
[4 .8%
[T 42.1%
[1.8 %
[40.3%

+ 31.2% boost needed

https://www.techempower.com/benchmarks/#section=data-r19&hw=ph&test=fortune

Measure, Measure, Measure

How to run the benchmarks?

e Sébastien Ros Modern BCL talk: https://msit.microsoftstream.com/video/95878f4d-6e5b-4655-850e-5056fe92f119

* Doc: https://github.com/aspnet/Benchmarks/blob/master/scenarios/README.md

dotnet tool install Microsoft.Crank.Controller --version "0.1.0-*" —global
crank --config https://raw.githubusercontent.com/aspnet/Benchmarks/master/scenarios/platform.benchmarks.yml

--scenario plaintext --profile aspnet-citrine-lin

To profile and get a trace file: --application.collect true

To use given .dll in the publish app: --application.options.outputFiles SpathToFile.dll

https://msit.microsoftstream.com/video/95878f4d-6e5b-4655-850e-5056fe92f119
https://github.com/aspnet/Benchmarks/blob/master/scenarios/README.md

Alternative: run them locally

» git clone https://github.com/aspnet/Benchmarks.git

e Start the web server:
* cd Benchmarks/src/BenchmarksApps/Kestrel/PlatformBenchmarks
* dotnet run -c Release
* You can publish a self-contained version and replace *.dll files if you want to test your local changes

e Start the HTTP benchmarking tool:
* cd Benchmarks/src/WrkClient
* chmod +x wrk

e ./wrk-c1 http://127.0.0.1:8080/plaintext -d 1m -t 1 --header
"Accept:text/plain,text/html;q=0.9,application/xhtml+xml;q=0.9,application/xml;q=0.8,*/*;q=0.7" -s scripts/pipeline.lua — 16

* (it’'s a sample command, don’t forget to change the number of connections, duration and thread count)
* The magic header value comes from wrk.yml|

https://github.com/aspnet/Benchmarks.git
https://github.com/aspnet/Benchmarks/blob/777fef3260cc117a302e150494030f4fcc90cb85/src/WrkClient/wrk.yml#L4-L6

The beginning of a performance investigation

fouo o Totals Metric: 178,610.0 Count: 178,546.0 First: 16,334.435 Last: 31,547.770 Last-First: 15,213.335 Metric/Interval: 11.74 TimeBucket: 4

Stark: 15,939.025 v~ | Ead: 31,878.051 v Find: Json

GroupPats: [no grouping] ~ Fold%: ~ FoldPats: v BIREPEES: Process%
By Name ? | Caller-Callee ? | CallTree ? | Callers ? | Callees ? | Flame Graph ? | Notes ?

Name ? Exc%? Exc? ExcCt? Inc%? Inc?
kernel.kallsyms!_raw_spin_unlock_irgrestore 5.6/ 10,034 10,036 5.6 10,056.3
kernel kallsyms!finish_task_switch 44 7,839 7.835 54| 9,664.6
kernel.kallsyms!__softirqentry_text_start 2.0 3,657 3,654 21.7| 38,780.3
libpthread-2.28.s0!_libc_recvmsg 2.0] 3,483 3,480 10.9 19,553.9
libcoreclr.so!Object:TryEnterObjMonitorSpinHelper 1.7 2,970 2,967 2.2 39459
kernel.kallsyms!do_syscall_64 14 2,516 2,513 29.0| 51,712.0
libcoreclr.solJIT MonExit Portable 1.3 2,349 2,347 1.7 3,096.0
Microsoft. AspNetCore Server.Kestrel.Core!Microsoft. AspNetCore Server.Kestrel.Core.Internal. Http.HttpPro’ 1.1 2,038 2,036 37.2| 66,495.5
System.Private.CoreLib!System.Runtime.CompilerServices.CastHelpers:IsinstanceOfClass(void* object) 1.1 1,950 1,948 1.5 2,603.6
libpthread-2.28.50!_libc_sendmsg 1.0[1,860 1,858 17.5| 31,202.6
System.Private.Corelib!System.Collections.Concurrent.ConcurrentQueueSegment 1[System._ Canon]:TryD 0.9 1671 1,669 1.5 2,676.6
Id-2.28.50!_tls_get_addr 0.9 1,611 1,609 1.2] 20721
libcoreclr.solJIT_WriteBarrier 09 1,537 1,535 1.2 2,108.1
System.Private.Corelib!System.Collections.Concurrent.ConcurrentQueueSegment 1[System._ Canon]:=TryE 0.8 1448 1,446 12| 21231
libc-2.28.50!epoll_wait 0.8 1,364 1,363 56| 99406
kernel.kallsyms!tcp_recvmsg 0.7] 1,333 1,331 3.9 68825
System.Private.CoreLib!System.Runtime.CompilerServices.CastHelpers:IsinstanceOfInterface(void*,object) 0.7] 1,322 1,321 1.0] 1,817.8
kernel kallsyms!_ fget 0.7 1,320 1,318 1.0 1,699.9
kernel.kallsyms!__nf conntrack_find_get 0.7 1,290 1,288 0.8 14547
Microsoft. AspNetCore Server.Kestrel.Core!Microsoft. AspNetCore Server.Kestrel.Core.Internal Http.HttpPars 0.7 1,236 1,235 2.5 44374
kernel.kallsymslixgbe_clean_rx_irg 0.7] 1,214 1,213 17.8] 31,825.1

System.Text.Json!System.Text Json.JsonSerializer+ <WriteAsyncCore>d_ 65:MoveNext()

1,179

14.6 26,047.7

B20

1) | =t | ek | ok | d | ek | d | ol | ok | o | s
e 0| ®(wN|lo|n |k |w|(Nj=(o (L0 & W N =

5.6
4.4

1.7
1.4
1.3
1.1
1.1

0.9
0.9
0.9
0.8
0.8
0.7
0.7
0.7
0.7

0.7 29.4]

Jx

=SUM(A1:A20)

Maybe Flame Graph can tell us something?

[H I‘n \“

+ |
|
.50l I
e
| Libeoracle. g0l ‘ .
e e o
5

ﬁ\ | M II i “ '\ q"‘ 1" | \
i *"7 |J| N

-ﬂﬂﬂw

rrrrrrrr

uuuuuuuuuuu

sten.private,

L\mn-dr
Ibeoracle.sol Abcoreclr.sol Lk libcorecir.sol- | | lbcoreclr.sol. [| libcorecir.sol- - [lbcorecir.sot. (MM || libcorectr.sot. || libcorecir.sol-

Lbcoreclr.sol- | | (ESESSSSSE BN EEm | W lbcoreclrsol. | lbcorsclrsol N W libcoreclrcof. [libcorsclr.sol_

uuuuuuuuuu

What if we fold All Threads?

15930025~

[fold threads)
e roupin]

group module entries] [5H1=>module $1

[group modules] {ip->module $1

[group mockle entries] {#Hi=>madule §1

[group full path module entries] ")1=>module §1
[iyreup class entries] (%1% 36(= »class $1:f5uth:=> chass 1
fgroup closses] 14 % choss S class 1

ATROST v Json

NET Server GC (31579)f NET Finalizer |

Theead -» AllThweads

o
111
l”l |\ il \" Il [1L 8 R ll
) "\\h i‘ L "I (0 T e T i I il
| i

Can we use Concurrency Visualizer?

ShareSource 2018-11-16_135335.CvTrace « X 8

o ‘N—'-\II i - T e
| !
Utilization Cores
EZoomD Sorthy: Start Time v | Markers= | 4 F 4|2 2 H| = <
Seconds
20 40 60 80 100 120 140 160
Thread ID Name P S S S [S S S S S S S A S S S S N S S S (T ST S S N
22500 Meain Thread I S 11 I BN
16020 Thread Pool I N O [/ D
10748 Thread Pool N Y [/ D
1255 Thread Pool N O Y 1] N BN
£376 Debugger Helper - [i [00|]
5 CRWekerThed | . > T - T]
16704 Worker Thread 1
15668 Thread Pool | N I [N |1 O N
21420 Thread Pocl (NN (N I NN DO [l
20772 Worker Thread |
368 Worker Thread I -
Visible Timeline Profile Profile Repart Current |j‘ Unblocking Stack |9 Hints |
Execution Moise reductionat|2 % Just My Code
76% B Synchronization " " " - -
Mame Inclusive Samy Exclusive Samj Inclusive (Perc Exclusive (Perc Details
1% B /0
= - 5 [ntdildll 37 0 32.46% 0.00%
a I Sleey =
= 2 M_E M I clrjit.dll 19 0 16.67% 0.00%
Memeory Management
=mory Management I ntoskrnl.exe 17 0 14.91% 0.00%
0% Preemption | mmssecfltsys 14 0 12.28% 0.00%
0% B U Processing 4 sharesource.sxe 7 0 6.14% 000%
Per Thread Summa 4 sharesource,exelSDKTemplate.Program.Main 7 0 6.14% 0.00% ShareSource!SDKTemplate.Program.Main:Ap|
Disk Operations I windaws.uixaml.ni.dlll0x55¢52 4 0 351% 0.00% Windows.Ul Xaml.nil0x35f52
Markers I windows.uixaml.ni.dll!Ox33ffc2 3 0 2.63% 0.00% Windows.Ul.Xaml.nil0x55ffc2
0% M This Process combase.dll 3 0 2.63% 0.00%
é 1% Other Processes unknown 3 0 2.63% 0.00%
0% Paging [user3Z.dll 3 0 2.63% 0.00%
wfilter.sys 3 0 2.63% 0.00%
4 4

s there any other tool that we could use?

% josalem commented on 27 Aug 2019 Member (2 <+

I just took a look at the file format, and it seems remarkably similar to the speedscope format (or | guess speedscope seems similar
toit @)A If | find some time, I'll take a look at what what amount of work it would take to write a converter.

Converter for Trace Event json (Chrome as viewer) #447 L

DA benaadams opened this issue on 25 Aug 2019 - 11 comments .
F g @ josalem commented on 27 Aug 2019 Member @ ---

Sneak preview:

0 benaadams commented on 25 Aug 2019 « edited « Member @ v

@rickbrew mentioned on twitter he'd added tracing to Paint.NET using the tracing format used by Chrome (and Brave and the new
Microsoft Edge) dev tools. =

It would be good to add this as and output/conversion format for dotnet-trace as either browsers Ul are highly developed and well
used and understood especially by webdevs and it can happily open and analyse file in that format from other sources.

Trace Event spec

chrome://tracing can open gzipped files (.json.gz) where as dev tools only understands them as raw .json . Dev tools is a little

easier to use (and probably most familiar) whereas tracing is a dedicated Ul for looking at larger traces. So it may be useful to

provide an additional .gz output option, but not have it as the default.

The json is also a format speedscope understands

/cc @migueldeicaza @lucasmeijer

bhs M

Needs a little polish, but it went together pretty quickly. Won't open in edge://tracing , but opens in devTools (haven't tried
Chrome yet). Very cool timeline view of stacked icicle graphs per thread!

https://github.com/dotnet/diagnostics/issues/447 https://github.com/microsoft/perfview/pull/1113

https://github.com/dotnet/diagnostics/issues/447
https://github.com/microsoft/perfview/pull/1113

How to use it?

PerfView

.| CPU Stacks(178,610 metric) before-js

Preset
Parent Window !
Set Symbol Path
Set Source Path

File | View Diff Regression

oy

| File to save view X
Save T <« techemp... » linux_sockets v | D Search linux_sockets r
Organize ~ New folder e
Save View As Bactic B g
[Desktop o
@ Documents '3 g
Cl 3
'D S E ¥ Downloads
b Music before-json-lin0 555.perfView.xml
& Pictures 1-30-16-21-49R
) PS-335K trace
m Videos
5 0SDisk (C)
w? Windows (D) v
File name: | before-json-lin.01-30-16-21-49.RP5-335K View1.perfView.xml ~
Save as type: |PerfView view file b4
PerfView view file
Comma Separated Value
~ Hide Folders Speed Scope
Chromium Trace Event

rtx_queue

Chromium

Lo
“rosoft « B Newtab Ctrl+T
B New window Ctrl+N
ER New InPrivate window Ctrl+Shift+N
Zoom — 87% +
if‘E Favorites
@ History
i Downloads Ctrl+)
B Apps
{:3 Extensions
Collections
Hé',: Print
B Share
[}) Find on page E‘h ﬂ
A) Read aloud
[r.gp' Save page as Ctrl+S More tools .-
[Cast media to device .
Settings

BOR)

ﬁ Pin to taskbar

Help and feedback

L h taskb i d
aunch taskbar pinning wizar Close Microsoft Edge

Browser task manager Shift+Esc =Y db
anaged by your or

E"}‘ Developer tools Ctrl+Shift+1

C © 2 ¢

e' DevTools - dotnet.microsoft.com/

Elements Console Sources

(no recordings)

Load profile...

Much better Overview!

| 08ms 10ms 18ms 20ms 28ms 30ms 38 A Fres S0ms S5ms soms 88ms T0ms T8ms &oms BSms a0ms a8 00 ms 105 ms 10 ms) NS ms 120ms 128ms 130ms 138ms 4o ms 148 me 180 ms

Il
T
[[T IOl | I
I 10 TR 0 | T J | I— 1] i 110011 N N I | O W N I 1 I || | | I W
> Toeeaa 3850 || ||] || I TIOWIT TR FOMED LTI UL T 0 LI | | | [Il LN N PO A UL AT T N R X A A Ty N e [N RILN N [ICHLCEENY I [N R
eaticaeonoll 111N 1 RETTIOEN VA O TN O R T MY B I | | | 111 PILEELNRLEDE | 1 O L N 1 T Y R 1 L A TN
LTIV 1 A 4 |1 | LN T L (T R T AT 1A AR TR IIEELETE) I L | A T AT [NI TP
wriissaztont || [I WP T L LT RETL R | [O 1 1 TR | L R s ST TR A RN 11l I TR P ERE 1 HE TP TR T e meenrm e e e e e i
Lt bl AL L L L T e ORI LI RN L | LT e e e 0 LTI LTI L o R A T A T
b Thrsad 31538 | |
¥ Thresd 31599 | |
» Thread 31600 | |
[+ tovesa stemn | |
 Threaa 31602 | |
* Thread 31603 | |
| |
| |
| |
| |
| |

& Thread 31604

¥ Thress 31605

» Thress 31606

P Thread 31607

¥ Thread 31608

¥ Threas 31608

» Thread 31341

b Thress 31424

» Threas 31560

» Thress 16

b Thread 31984

b Thress 22

» Thress 31046 |

» Thissa 31558 1]

» Thread 31558 |

b Threas 31545

b Thread 31327 |
» Toresa 31328 |
b Thread 31328 |
P Thread 31331

» Thread 31332 Il
» Thread 31233 il
» Thread 31234 Il
» Thread 31335 i
» Thresd 31336 111
» Thread 31338 |
» Thread 31330 |
b Thread 31337 I
» Tnress 31239

» Tnress 31323

P Thread 31952

b Threas 31847

s GC a problem? No.

| 08ms 10ms 18ms 20ms 28ms 30ms 38 A Fres S0ms S5ms soms 88ms T0ms T8ms &oms BSms a0ms a8 00 ms 105 ms 10 ms) NS ms 120ms 128ms 130ms 138ms 4o ms 148 me 180 ms

T
[T T[T
| TR 0 P] I 11T 1]

¥ Thread 31850 LA R, R A A AN A B N N (AR RN RN

1100 1 N N L]l I 1 I | 1 I W TInnm
1 18 LN N LA N AT T TN M L L I I T T R L T TN T I [ICHLCEENY I 1| [INALNN [N R
gt |11 RO N L (O 1 A o A A1 A 11 LN 1 Y R T
Lt T 1 N 0 | 1 1 1 T T AR R RN IIEELETE) L1 11 T T A WAL
wriissaztont || [0 I WP OO DL R WREED I EEE L IEE LTI T LN A T IR TN A RN 11l I TR P ERE 1 HE TP TR T e meenrm e e e e e i
Lt Sl T L O 1 T AT e ORI M A BRI (N RN L | LT e e e 0 TEHETNRITE e L o R A T A T

b Thrsad 31538 | |

¥ Thresd 31599 | |

» Thread 11600 | |

[+ tovesa stemn | |

* Thresd 31602 | |

* Thread 31603 | |

| |

| |

| |

| |

| |

b Thread 31604

¥ Thress 31605

» Thress 31606

b Threst 31607

¥ Thread 31608

¥ Threas 31608

» Thread 31341

b Thress 31424

» Threas 31560

» Thress 16

» Thiead 31884

b Thress 22

» Thress 31046

» Thresd 31558 1]
» Thread 31558 |
b Threas 31545

» Thrsas 31327 il
» Thiese 31328 il
b Thread 31328 il
P Thread 31331 I

» Thread 31332 Il
» Thread 31233 il
Qo G C I
» Thread 31335 i
» Thresd 31336 111

|

¥ Thread 31338 I
» Toreaa 31330 Il
b Toresa 31357 Il
» Thresd 31339
» Thvesa 31323
» Thread 31952
b Toreas 31047

Why do we have few threads that are not 100% active?

epoll wait

What is epoll?

what'’s epoll?

Okay, we're ready to talk about epoll!! This is very exciting to because I've seen
epoll_wait alot when stracing programs and I often feel kind of fuzzy about
what it means exactly.

The epo11 group of system calls (epo11_create, epoll_ctl, epoll_wait) give
the Linux kernel a list of file descriptors to track and ask for updates about
whether

Here are the steps to using epoll:

1. Call epol1_create to tell the kernel you're gong to be epolling! It gives you
an id back

2. Call epol1_ct1 to tell the kernel file descriptors you're interested in updates
about. Interestingly, vou can give it lots of different kinds of file descriptors
(pipes, FIFOs, sockets, POSIX message queues, inotify instances, devices, &
more), but not regular files. I think this makes sense — pipes & sockets
have a pretty simple API (one process writes to the pipe, and another
process reads!), so it makes sense to say “this pipe has new data for
reading”. But files are weird! You can write to the middle of a file! So it

doesn’t really make sense to say “there’s new data available for reading in
this file”.

3. Call epo11_wait to wait for updates about the list of files you're interested
in.

https://jvhs.ca/blog/2017/06/03/async-io-on-linux--select--poll--and-epoll/

https://jvns.ca/blog/2017/06/03/async-io-on-linux--select--poll--and-epoll/

Side note: People don’t like epoll

more select & epoll reading e > ' U b u n tu -
Slaughters

I liked these 3 posts by Marek:

o select is fundamentally broken

o epoll is fundamentally broken part 1

o epoll is fundamentally broken part 2 -
In particular these talk about how epoll’s support for multithreaded programs I e n S

has not historically been good, though there were some improvements in Linux

Episode 103

https://youtu.be/I6XQUcil-Sc?t=3429

* @

https://youtu.be/l6XQUciI-Sc?t=3429

“The Linux Programming Interface” boo

63.4.5 Performance of epoll Versus 1/0 Multiplexing

Table 63-9 shows the results (on Linux 2.6.25) when we monitor N contiguous file descriptors in the range
0to N — 1 using poll(), select(), and epoll. (The test was arranged such that during each monitoring operation,
exactly one randomly selected file descriptor is ready.) From this table, we sce that as the number of file
descriptors to be monitored grows large, poll() and select() perform poorly. By contrast, the performance of
epoll hardly declines as N grows large. (The small decline in performance as N increases is possibly a result

of reaching CPU caching limits on the test system.)

For the purposes of this test, Fo_sets1ze was changed to 16,384 in the glibc header files to allow the test

program to monitor large numbers of file descriptors using select().

Table 63-9: Times taken by poli(), select(), and epoll for 100,000 monitoring operations

Number of descriptors poll() CPU time select() CPU time epoll CPU time
monitored (N) (seconds) (seconds) (seconds)

10 0.61 0.73 0.41

100 2.9 3.0 0.42

1000 35 35 0.53

10000 99@ 930 0.66

In Section 63.2.5, we saw why select() and polf() perform poorly when monitoring large numbers of file

descriptors. We now look at the reasons why epo// performs better:

Reducing the epoll threads to 1

3 1]
[Thread 31672 LU UL O T T
7

. 5
> Toresd 31650 |[[]][]

\HIII O FINEICT T PO E T 1L T I 1 | [T IR0 LTT T T LN N AL AL AT AV T [0 TR TR T O T {11 [T [RLERC N YN |
?T'!m“'ﬂﬂ\\ I 111 LN S A JLLAN, 1111 | \HIIH EUCTEL T | UL TEE L HERRI IOy IIIIHHIIIIHI\ N oL 1 AN H\HIHIIIIIIHI\II | T R
> mes 31857 || | 111 | IR P TEE LT Wi O Lm0 B T R AW LA L 1 W4 AV U T A IURA TN LA 0 T A 1 WA [Tt [
> Tribad 31061 | \IIH T L 1 1 L 1 A I\IHIII\I\I LT | IIHHI\ LLNRE Y o IR TR IIIH LRI LN (Al L T | A AR [L AR TR RN al LT e 1
» Thread 31852 0 T XTI 0 T 1L1 0 I LUl LU i 1 A Ll O 0T M A [T TRT N

-‘ Illllllul () E_H,;j i

v 2 il src/libraries/System.Net.Sockets/src/System/Net/Sockets/SocketAsyncEngine.Unix.cs I:]
X @@ -185,7 +105,7 @@ public bool TryRegister(SafeSocketHandle socket, out Interop.Error error)
I/

private static readonly IntPtr MaxHandles = IntPtr.Size == 4 ? (IntPtr)int.MaxValue :

ftendif

2346: 1 epoll thread per 1024 connections

(IntPtr)long.MaxValue;

private static readonly IntPtr MinHandlesForAdditionalEngine = s_engineCount == 1 ? MaxHandles : (IntPtr)32;

+ private static readonly IntPtr MinHandlesForAdditionalEngine = s_engineCount == 1 ? MaxHandles : (IntPtr)EventBufferCount;
6/12 cores 14/28 cores
Benchmark (Median) Before After After Diff %
Plaintext 1,977,695 2,045,820 3.33% 4,023,529 4,113,391 2.18%
Json 340,522 382,570 10.99% 763,704 830,055 7.99%
DbFortunesRaw PostgreSQL 103,392 111,416 7.20% 249,026 274,362 9.23%
PlaintextNonPipelined 376,117 428,488 12.22% 833,743 851,074 2.04%

https://github.com/dotnet/runtime/pull/2346

https://github.com/dotnet/runtime/pull/2346

#19396: Add SocketTransportOption to
enable/disable WaitForData e

JSON
WaitForData enabled:
LY Conversation 21 Commits 6 Checks 17 Files changed 5
m tmds commented on 27 Feb --jobs "..\Benchmarks\benchmarks.json.json" --scenario "Json"

This allows to opt-out of the zero-byte read that is performed to reduce memory usage for idle connections.

This read has a measurable impact on TE JSON benchmark. RequestsPerSecond: 840,803
Max CPU (%): 100
WorkingSet (MB): 417
Avg. Latency (ms): 0.86
// Wait for data before allocating a buffer. Startup (ms): 504
First Request (ms): 44 .64
await _receiver.WaitForDataAsync(); Latency (ms): 8.11
Total Requests: 12,696,202
if (_waitForData) Duration: (ms) 15,100
Socket Errors: 2]
{ Bad Responses:]
Build Time (ms): 3,001
// Wait for data before allocating a buffer. Published Size (KB): 26,065
SDK: 5.0.100-preview.2.20120.3
await _receiver.WaitForDataAsync(); Runtime: 5.8.0-preview.2.20125.16
ASP.NET Core: 5.0.0-preview.2.20126.7

WaitForData disabled:
// Ensure we have some reasonable amount of buffer space

--jobs "..\Benchmarks\benchmarks.json.json" --scenario "Json"

var buffer = input.GetMemory(MinAllocBufferSize);

https://github.com/dotnet/aspnetcore/pull/19396 Requestspersecond: S

https://github.com/dotnet/aspnetcore/pull/19396

't was not that simple...

Scenario @ Middleware-lin @Platform-lin Scenario @ Middleware-lin @Platform-lin L
U
gmin —.Mv_,f_h—/z 0,8 min
Down
6 min 0,6 min —
4 min v — —Y vﬂ".» 0,4 min
~——"]
2 min 0,2 min
0 min 0,0 min
sty 2020 lut 2020 mar 2020 sty 2020 lut 2020 mar 2020
Scenario @ADO.NET-lin @ Dapper-lin @EF-lin @ MVC ADO.NET-lin @MVC Dapper-lin @MVC EF-lin Scenario @ DbMultiUpdat... @ DbMultiUpdat... @ DbMultiUpda... @ MvcDbMulti.| @ MvcQbMulti... © MvcDbMult...
e o Y N
A Aot U < WF\
0,2 min a/sr——-—-'www 5
WW__‘M/—/_
5 tys.
0,7 min a'n B S

https://github.com/dotnet/runtime/pull/33855 - revert of 1 epoll thread per 1024 connections

https://github.com/dotnet/runtime/pull/33855

Why the Platform benchmark has regressed?

5103143 v 21,141.593

epoll_wait

[no grouping]

By Name ! | Caller-Callee ? | CallTree 2 | Callers 2 ‘ Callees 2 ‘ Flame Graph

Notes ?

.NET ThreadPool|.NET Server GCldotn ~

< C @

—|Left Hea
2,005

a Time Order

2,005
WNET ThreadPool
Thread (13377}

Libpthread-2.28. 50! start_th

Uibcoreclr.solCornix: :CPal
libcoreclr.so! ThreadNative:
Libeoreclr.so!NanagedThrasd

libeoreelr.salHanagedThresd

libcoreclr.so! Threadiative:
Libcareclr.so!MathodDascCal
ibeoreclr.solCallbescruark
System, Private.Corelib.dl

System,at. Sockets, d11!unkn|

4,005

4,005

ead
hresd: 1 ThrasdEntry
fkickoFFThresd

Base: tKickDFE

Base_DispatehOuter
KickDF FThread_Worker
Isite::callTargathorker

érinternal

known

b

ke s

i speedscope. app

System.Net.Sockets u

System,Net, Socksts!System, N

t.Socket

: tHandleEvents (valuetype Intf

6,005

6,005

System Het,Sockats! N
System,Private.CorelLiblSyst,

et TN

+Socks

iomt 1Dispatch()

fm. Threading.
Ihcaadi

rop/Sys/SocketEvents)

*1[Systen.__Ganonl:

8.00s

class

16.00s

16.00s

Sylstem.Threading. TThreadPos lWo

System,Private.Corelib!Syst

m. Threading. Qu

I

Name 2 Exc%2 Exc? ExcCt? Inc%2 Inc? IncAvg? IncCt? Fold? FoldCt? When?
libcoreclrsolCLRLifoSemaphore:Wait 19.7) 82,976 82,976 29.2|122,830.0) 1.0 122,830) 0) o -
libcoreclr.so!ThreadpoolMgr:WorkerThreadStart 5.6 23,642| 23642 81.0/340,949.0 1.0] 340,949 0] {1 icteleininiuoieileininintotnislnininintainil
libcoreclr.so!CLRLifoSemaphore:Release 49| 20,800] 20.800) 5.4(22.700.0 1.0/ 22.700) 0f (|FFECCOFFIIFCECEERIFEDCEIECCERE
libcoreclrsol ThreadpoolMgr:MaybeAddWorkingWorker 42| 17,533 17.533 4.6 19,357.0 10| 19357, 0) (|PBOCRSAGOOBCAACEEECCAERCTOBEFCD
System.Private.CoreLib!System.Threading. ThreadPoolWorkQueue:Dequey 40[16780] 16,780 7.1| 29,864.0) 10| 29.864] 0) 0]° TIHLANEHI_
libc-2.28.50!_sched yield 26] 11,071 11,071 7.6] 31,986.0) 1.0[31,986 0 oFERRN TLIR
kernelkallsyms!_schedule 23| 9,820 9,820 3.1{ 12,863.0 10| 12,863] 0) Q| TEASIASTIEITETIECERARATEETERES
System.Private.Corelib!System.Collections.Cancurrent.ConcurrentQueueS| 23| 9,708 9,708| 3.2| 13,525.0, 1.0] 13,525 0f e e
kernel.kallsyms!do_syscall 64 22| 9372 9372 17.3] 73.040.0) 1.0 73.040 0] 0] -
System.Private.CoreLib!System.Threading. ThreadPoolWorkQueuezEnsure]| 16 6723 6723 10.5| 44,1230 1.0 44123 0) (1S TRAFCVERVERRSTTORRS S FUVUSANTE
libcoreclr.so!ManagedPerAppDomainTPCount:TakeActiveRequest 16| 6,675 6,675) 1.7 7,290 1.0| 7,290 0f Qf7459438444455554455434444443434_
System.Private.CorelibSystem.Threading. ThreadPoolWorkQueue:MarkTh 13] 5391 5391 14| 5967.0) 1.0] 5967 0] [R R CA LT EEL L L L L
libcoreclr.so!ManagedPerAppDomainTPCount:SetAppDomainRequestsAd 12| 5190 5,190 79[33,219, 10| 33,219 0| p[oLMR T IIOHROLT IIMAIOLIL THONI IO,
libcoreclr.solJIT_MonExit_Portable 12| 4932] 4932 1.3] 54100 10] 5410 0 p[o423332233223332333333223344323_
libpthread-2.28s0!_libc_recvmsg 1.1 4.837] 4837 5.4] 22,6300 1.0 22630 0| (|?EFODDCDFEDFHIEFDRDEFEDODGHIEDE_
kernel.kallsyms!_softirgentry_text start 11] 4831 4831 8.2[34540.0 1.0] 34540 0] O[O PELITLIOOGRRKELHINITLAEHIN,

Tibcareclr.sal ThreadPaoiNat
Uibcoreclr.sol ThreadpaolMgr
ibcoreclr,

eques tHor ker Thread

:SetappDomainkequestsictive

ount:

Libeareclr.sa!CLR.

Libe

12,005

systext) | 5

ntext) Le -

sble e

14,005

epoll |wait

e
Libe-2.26. 0 epoll wait
kernel.kallshfrer_hwfrane
kernal.kallal.o_syscall_s4
kernel.kallsis_epoll_wait
kernel.kallsyms!ep_poll
i e
kernel kalLhvents_proc
kernel ke sfa. 12

kernal_ke_poll
el .

nsureThreadRequested

Kount has provided an excellent explanation

‘ kouvel commented on 20 Mar « edited « Member @

It still does not answer the question of why replacing a few epoll threads that were enqueueing work on ThreadPool with a
single one leads to degradation of the performance of enqueueing

A possibility could be that more epoll threads are more frequently able to keep the thread pool busy enough for that path to go
down the fast path:

runtime/src/libraries/System.Private.CoreLib/src/System/Threading/ThreadPool.cs
Lines 435 to 445 in 5c6a91d

int count = numOutstandingThreadRequests;

while (count < Environment.ProcessorCount)

{
int prev = Interlocked.CompareExchange(ref numOutstandingThreadRequests, count + 1, count);
if (prev == count)
{
ThreadPool.RequestWorkerThread();
break;
}
count = prev;
}

One epoll thread may not be queuing things fast enough and causing EnsureThreadRequested to go down the slow path. Based
on the time spent under that method most of the time is spent under RequestWorkerThread , which is the slow path where at least
one thread had not found work in the thread pool. Hence the time spent spin-waiting for a short time in CLRLifoSemaphore: :Wait ,
which means for about 20% of the time a thread pool thread is running out of work for a very short duration.

There is also a possibility the epoll thread is getting starved a bit by the spin-waiting, though if that is removed it would likely
translate into higher context-switch CPU time. cOMPlus_ThreadPool_UnfairSemaphoreSpinLimit=0 disables the spin-waiting there,
may be interesting to try, to see if it noticeably affects the time spent under EnsureThreadRequested on the epoll thread. If there is
an effect then maybe it could use an earlier sleep.

https://github.com/dotnet/runtime/issues/33669#issuecomment-601459220

https://github.com/dotnet/runtime/issues/33669#issuecomment-601459220

Which started a discussion

a adamsitnik commented on 20 Mar « edited ~ Member = Author = (%) =+

Based on the time spent under that method most of the time is spent under RequestWorkerThread, which is the slow path
where at least one thread had not found work in the thread pool.

This great insight made me try reducing the number of min and max threads in ThreadPool. When | set the values to <19, 28> for
JSON and <15, 16> for Plaintext the problem is gone and RPS is back to normal.

| |
| |
| |
| |
| |
| |
| |
! 1
| [

THE:HORE

Without it, there are on average 62 threads in the thread pool (Environment.ProcessorCount returns 28) and as we can see in the

histogram below, more than 10 of them are almost never busy:

https://github.com/dotnet/runtime/issues/33669#issuecomment-601675592

https://github.com/dotnet/runtime/issues/33669#issuecomment-601675592

#20518: |s it possible to tune request parsing any further?

38

adamsitnik commented on 3 Apr + edited « Member = sse

| am currently working on improving our results in the JSON TechEmpower benchmark.
We got to the point, where everything was already tuned at least once and even 1% matters.

The majority of time is spent on necessary work like sending & receiving messages, epoll & thread pool scheduling that are hard or
impossible to optimize any further.

For the JSON Platform benchmark, we spent 5% of the time on parsing headers.

Parsing 5%

If I remove it, | get something around 40-50k RPS gain.

@GrabYourPitchforks is there any chance that you could take a look at the parsing logic and see if there are any possibilities to
optimize it any further? | know that you have a LOT of expertise in the low-level tuning of text operations.

I've prepared a copy of the TE logic and encapsulated it into a benchmark that can be run by doing the following:

git clone https://github.com/adamsitnik/aspnetcore.git parsing

cd parsing

git checkout techEmpowerParsing

./build.sh

./.dotnet/dotnet run -c Release -f netcoreapp5.8 --filter TechEmpowerHttpParserBenchmark --project ./src/Servers/Kestrel/p

>

https://github.com/dotnet/aspnetcore/issues/20518

halter73 commented on 3 Apr Member so¢

HTTP/1.x parsing has already been pretty heavily optimized by people like @benaadams.

We don't really do text operations at the HttpParser-level. We treat everything as bytes. Instead we use ReadOnlySpan.IndexOf (or
ReadOnlySequence.PositionOf for headers that span multiple blocks), to search for the next \n byte in the input stream and slice.
These methods have been vectorized where possible.

There's some validation that happens to verify that the headers don't contain any invalid bytes (also vectorized), and there's some
copying that happens for headers that span multiple blocks, but there's no decoding, string allocations or anything like that going
on in the platform benchmarks. It just calls the no-op BenchmarkApplication.public.OnHeader(ReadOnlySpan<byte> name,
ReadOnlySpan<byte> value) implemenation.

Member Author = eee

adamsitnik commented on 6 Apr

| just looked at the current implementation and my first thought is: why do we iterate over a parser line so many times? And why do
we use vectorized methods? Vectorization has an overhead and for small inputs, it very often means even worse performance. Are
typical HTTP header names and values long? (sorry | am a web n00b).

https://github.com/dotnet/aspnetcore/issues/20518

#20885: Make HTTP/1.1 startline parsing "safe"

Make HTTP/1.1 startline parsing "safe" #20885

)nAV GG halter73 merged 3 commits into dotnet:master from benaadams:startline-parsing (5] on 24 Apr

.NET pr-benchmarks bot commented on 22 Apr

Baseline

Starting baseline run on 'f9a9788c67355351f6c2844489b71bed95c48953". ..

() Conversation 45 -o- Commits 3 [Fl Checks 17 Files changed 22

RequestsPerSecond: 341,134
Max CPU (%): 99
WorkingSet (MB): 88
. Avg. Latency (ms): 6.79
benaadams commented on 16 Apr - edited ~)
Startup (ms): 588
First Request (ms): 156,87
. Latency (ms): 8.5
To @blowdart with ' Total Requests: 5,149,335
Duration: (ms) 15,0908
. Socket Errors:]
Contributes to #4720 Bad Responses: o
Build Time (ms): 24,012
Published Size (KB): 128,355
HttpParSerBenChmark SDK: 5.08.180-preview.2.20120.3
Runtime: 5.8.8-preview.4.20220.19
ASP.NET Core: 5.8.8-preview.5.20221.4
Method	branch	Mean	Op/s	Delta
-oommmme oo	-------	---omn-e	<o mmmmeeees lommeees 0	
PlaintextTechEmpower	master	157.8 ns	6,336,737.4	
PlaintextTechEmpower	PR	128.4 ns	7,785,593.2	+22.9%
JsonTechEmpower	master	153.1 ns	6,531,862.7	
JsonTechEmpower	PR	121.1 ns	8,257,583.2	+22.4%
LiveASpNet	master	290.2 ns	3,445,507.2	
LiveAspNet	PR	253.1 ns	3,950,427.6	+14.7%
Unicode	master	379.4 ns	2,635,542.4	
Unicode	PR	343.5 ns	2,911,272.1	+10.5%

https://github.com/dotnet/aspnetcore/pull /20885

24012 |
7584 |

C) wee

RPS | CPU (%) | Memory (MB) | Avg. Latency (ms) | Startup (ms) | Build Time (ms) | Published Size (KB)

128355
120355

https://github.com/dotnet/aspnetcore/pull/20885

35330: Parallelize epoll events on thread
pool and process events in the same thread

) Conversation 93 -0~ Commits 13 [F) Checks 116 [¥) Files changed 2

w kouvel commented on 23 Apr Member () +-*

It was seen that on larger machines when fewer epoll threads are used, throughput drops significantly. An issue was that the epoll
threads were not able to queue work items to the thread pool quickly enough to keep thread pool threads fully occupied. When the
thread pool is not fully occupied, thread pool threads end up waiting for work and enqueues are much slower as they need to
release a thread, creating a positive feedback loop, and lots of thread pool threads being released to look for work items and not
finding any. It also doesn't help that the thread pool requests many more threads than necessary for the number of work items
enqueued, and that the enqueue overhead is repeated for each epoll socket event.

Following @adamsitnik's idea on batching the enqueues to the thread pool and requesting only one thread to limit the overhead,
this change tries to reduce and delegate the overhead in epoll threads into the thread pool and automatically parallelizing that
work, and to decrease the number of redundant thread pool work items a bit.

e The epoll thread enqueues socket events to a concurrent queue specific to the epoll thread. If the queue is busy enough,
enqueues would not contend.

® The epoll thread then schedules a work item to the thread pool to process events, if a work item is not already scheduled

® When the work item runs, it dequeues an event, schedules another work item if necessary to parallelize the work, processes the
event, and continues until the event queue is empty

® At most one work item is scheduled to the thread pool at a time to avoid over-parallelizing the work

® Since socket events are now processed on a thread pool thread already, the change also avoids scheduling a redundant thread
pool work item to perform the socket operations and user callbacks

® The change is relatively more beneficial when fewer epoll threads are used. A heuristic for that is being discussed separately, for
now this change doesn't change the number of epoll threads.

51 @12 £

https://github.com/dotnet/runtime/pull/35330

https://github.com/dotnet/runtime/pull/35330

Big wins!

‘ kouvel commented on 1 May

Updated numbers below with preview 5 SDK. These are with hill climbing disabled.

FortunesPlatform

This benchmark seems to be affected by the number of connections and epoll threads. On the x64 machines, in some cases with 512
JsonPlatform connections and 1 epoll thread the change seems to be performing slightly worse than the baseline, while with 256 connections and
1 epoll thread the change seems to be performing slightly better.

28-proc x64 machine
28-proc x64 machine

512 connections Epoll threads Before After Diff
256 connections Epoll threads Before After Diff

16 937492 983232 4.9%
8 295163 303885 3.0%

4 1054384 1095836 3.9% 4 308736 314709 19%

2 1004742 1136945 13.2% > 319814 324905 16%

1 717291 1175142 63.8%] 1 322504 334484 3.7%

Max 1054384 1175142 11.5% Max 322504 334484 37%

12-proc x64 machine 512 connections Epoll threads Before After Diff

0
512 connections Epoll threads Before After Diff 1 295230 306175 37%

16 462025 502741 8.8% 4 1313 303398 A%

L 486645 536467 10.2% ? 320348 | 311658 | -28%
1 326749 314887 -3.6%

2 509969 568554 11.5%
Max 326749 314887 -3.6%

1 525168 586676 11.7%

Max 525168 586676 11.7%

https://github.com/dotnet/runtime/pull/35330#issuecomment-622306651

https://github.com/dotnet/runtime/pull/35330#issuecomment-622306651

2"d PR: Single epoll thread per 28 cores

$+ Merged Single epoll thread per 28 cores #2550 of2flesviewed @ l
Changes from all commits » File filter... v Jump to... v @ -

v 111 HEEE src/libraries/System.Net.Sockets/src/System/Net/Sockets/SocketAsyncEngine.Unix.cs |:]

+ private static int GetEngineCount()

+ {

+ // The responsibility of SocketAsyncEngine is to get notifications from epoll|kqueue

+ // and schedule corresponding work items to ThreadPool (socket reads and writes).

+ 1/

+ // Using TechEmpower benchmarks that generate a LOT of SMALL socket reads and writes under a VERY HIGH load

+ // we have observed that a single engine is capable of keeping busy up to thirty x64 and eight ARM64 CPU Cores.
+ //

+ // The vast majority of real-life scenarios is never going to generate such a huge load (hundreds of thousands of requests per second)
+ // and having a single producer should be almost always enough.

- 7 !/

+ // We want to be sure that we can handle extreme loads and that's why we have decided to use these values.

+ i

+ // It's impossible to predict all possible scenarios so we have added a possibility to configure this value using environment variables.
+ if (uint.TryParse(Environment.GetEnvironmentVariable("DOTNET_SYSTEM_NET_SOCKETS_THREAD_COUNT"), out uint count))
+ {

+ return (int)count;

+ }

+

+ Architecture architecture = RuntimeInformation.ProcessArchitecture;

+ int coresPerEngine = architecture == Architecture.Armé64 || architecture == Architecture.Arm

+ ? 8

+ : 305

+

+ return Math.Max(1, (int)Math.Round(Environment.ProcessorCount / (double)coresPerEngine));

https://github.com/dotnet/runtime/pull/35800/

https://github.com/dotnet/runtime/pull/35800/

How to read the results

g adamsitnik commented on 6 May « edited ~ Member = Author

How to read the results

| A | B Cc G | H | | J K |

~ 1 |Machine Connections ‘Benchmark) 1ET LD 2ETCD 2ET LD 4ET CD 4ET LD

2 Citrine 28 cores 128 PlaintextPlatform 7,672,906 7,396,472 7,431,925 7,371,931 7,361,014

3 | JsonPlatform 753,185 787,839 771,172 753,278 756,862
4 FortunesPlatforn 293,637 05,006 94

5 174,056 171,451 172,060 168,792 170,285

before #35330 means results before merging #35330
#35330 means code after merging #35330

@ cos

L
MAX
7,672,906
850,134
305,006
179,321

xET yD means code after merging #35330 with the micro-optimizations from this PR, using x epoll threads, using y Dictionary.

y : € stands for Concurrent while L for generic dictionary used under Lock. So 1ET ¢ means single epoll thread using
Concurrent Dictionary.

Fortunes Batching means Fortunes Platform benchmark executed with a copy of Npgsql.dll provided by @roji that implements

batching

Colors: default MS Excel color scheme where red means the worst and green means the best result.

x64 12 Cores (the perf machine)

Let's start with something simple:

4 A , B 1 c D . , F 1 © . H | | | J ‘ K | L |
1 Machine Connections Benchmark before #35330 #35330 1ET CD 1ET LD 2ET LD 4ET CD 4ET LD MAX
28 Perf 12 cores 128 PlaintextPlatform ' - , 4,598,769 4,661,761
29 JsonPlatform 08,45 461,018 463,563 504,433
30 | FortunesPlatform 129,064 128,391 138,110
31
32 | 256 PlaintextPlatform 35 § 4,961,895 4,959,549 5,216,799
33 JsonPlatform 524,208 521,502 500,784 497,616 542,939
34 FortunesPlatform 135,937 135,015 131,856 131,496 140,190
35
36 512 PlaintextPlatform 5,324,880 5,132,818 5,075,158 5,518,636
37| JsonPlatform 551,288) 514,124 513,776 558,511
38 FortunesPlatform 128,165 128,639 128,783 ‘ 130,741
39
40 1,024 PlaintextPlatform 4,993,844 4,976,044 5,251,659
41 JsonPlatform 514,228 512,937 571,392
42 FortunesPlatform 121,022 119,493 119,980 124,303
43
44 20,000 PlaintextPlatform 4075886 3,941,157 4,384,982
45 JsonPlatform 345,486 346,800 382,610
46 FortunesPlatform 107,308 106,063 110,314

As we can see, switching to a single epoll thread and using ConcurrentDictionary gives the best results - the 1ET ¢d column is the

greenest one. No regressions, pure win.

There are two cases where having more epoll threads gives better results:

® JsonPlatform using 512 connections. We could get 130k instead of 128k. The difference is so small that it's ignorable

e PlaintextPlatform using 20_000 connections. The difference is small, but IMHO Plaintext is the most artificial benchmark

(because of the pipelining and super small response) and making the heuristic more complex to get few extra % here is not

worth it.

x64 28 Cores (Citrine, the TechEmpower machine)

TechEmpower hardware:

4 A | B | c 1 D , E l F ‘ G | H | | \ J l K . L |
1 Machi Connections Benchmark before #35330 #35330 1ET CD 1ET LD 2ETCD 2ETLD 4ETCD 4ETLD MAX
2 Citrine 28 cores 128 PlaintextPlatform 7396472 7431925 7,371,931 7,361,014 7,672,906
5 JsonPlatform 787,839 771,172 753,278 850,134
4 FortunesPlatform 5 305,006
5 Fortunes Batching 174,056 171,451 170,285 179,321
6

il 256 PlaintextPlatform 8,997,581
8 JsonPlatform 1,006,786 996,792 981,305 982,572 1,092,889
9 FortunesPlatform 321,783 319,000 316,409 315,030 339,556
10, Fortunes Batching 311,945 304,352 307452 204810 290910 343,612
1
12| 512 PlaintextPlatform 9153825 9,153,160 9,200,770 9,139,853 9,327,239
13 JsonPlatform ; 1,058,435 1074620 1,044,485 1,071,394 1,123,093
14 FortunesPlatform 30 311,268 314,805/ 318,296 /) 318,296
15 | Fortunes Batching : 388,114 384,782 367,437 368,849 407,231
16

17, 1,024 PlaintextPlatform 9,266,961 9,275,661 9,305,794 9204526 9,373,300 9,310,366 9,373,390
18 JsonPlatform 1,084,105 1,086,495 1,074,888 1,069,799 1,143,559
19| FortunesPlatform 294,755 296,556 292,395 293,485 301,019
20 Fortunes Batching 405,383 400,590 398,749 419,579
21|
2] 20,000 PlaintextPlatform 7,101,04 7,056,471 7,170,514
23 | JsonPlatform] B2 7,23(823,88¢ 838,540
24 FortunesPlatform 241,759 243,700 242,205 239,267 238,290 251,166
25 Fortunes Batching 328,056 321,860 326,969 337,845

Again, switching to a single epoll thread and using ConcurrentDictionary gives the best results - the 1eT ¢ column is the greenest
one.

There are few cases where having more epoll threads gives better results:

e small and ignorable differences within the marigin of error:
0 300k vs 305k for Fortunes using 128 connections
o 311k vs 318k for Fortunes using 512 connections
0 9268k vs 9373k for Plaintext using 1024 connections
e a regression from 742k to 723k for JsonPlatform with 20_000 connections. It's a 2.5% regression, so it's small and the two other
benchmarks (Plaintext and Fortunes) give the best results for this config so | think that it's acceptable

Very good thing: the throughput of JSON and Fortunes benchmarks rise when the number of clients increases (to some point ofc).
We did not have that before.
Another great thing: 417,499 for Fortunes 1024 connections with latest bits from @roji It's top 10 of Fortunes ;)

x64 56 Cores (Mono machine)

[A | B , G | D | E [| G , H | I [J , K |
1 |Machine Connections Benchmark before #35330 #35330 1ET CD 1ET LD 2ET CD 2ETLD 4ET CD 4ET LD
70 Mono 56 cores 128 PlaintextPlatform 6,508,597 6,767,192 6,523,399 6,478,501 6,489,369 6,542,138
71] JsonPlatform 664,928 639,536 660,309 669,500 585,216 670,094
72 .
73 256 PlaintextPlatform 6,906,699 6,908,931 99, ,923,914 | 6,915,618
74 JsonPlatform 980,908 922,999 908,916 957,700 995,169 997,400
75
76 512 PlaintextPlatform 6,941,870 5,941,820 6,950,605 954
77 JsonPlatform 623578 1,079,661 1,042,180 1,038,941 1,132,995
78
79 1,024 PlaintextPlatform 6,960,810 6,962,596 6,935,703 6,949,966 6,960,98 6,961,073 6,964,004 6,959,078
80 JsonPlatform . 1M,710 1,138,508 982,306 1,048,731 1,191,32 206,23 1,145,028 1,175,588

82 20,000 PlaintextPlatform 6,825,034 6,784,191 6,847,910
83 JsonPlatform 860,291 919,557 949,984

6,830,042
954,127

L I
MAX
6,964,004
673,968

6,928,565
1,038,827

6,954,533
1,175,365

6,964,004
1,206,231

6,863,600
974,414

With 56 cores having a single epoll thread is not enough. Having two gives us the most optimal solution that is improving all cases.

There are two cases where having more epoll threads gives better results, but all of them are small and ignorable differences within

the margin of error:

® 6954k vs 6950k for Plaintext using 256 connections
® 6964k vs 6960k for Plaintext using 512 connections

There are two where having less epoll threads gives better results:

® ighorable 660k vs 673k for JsonPlatform using 128 connections

® 6523k vs 6964k for PlaintextPlatform using 128 connections. Having a single epoll thread could give us better results, but we

still have an improvement compared to base 6011k. We could reach it by setting the MinHandles to 128 instead of 32, but |

don't think that it's worth it - it's rather unlikely that such a beefy machine is going to be used for handling such a small load.

Very nice thing: the gains are really big. Even up to x2 for Json with 512 connections.

The Fortunes benchmark is not included because for some reason this machine can not currently access the db server.

ARM®64 32 Cores

Here is where things get complicated:

Y| A [B [C | D 1 E | F | G | H [| ‘ J | K ‘ L |
1 Machine _Connections ‘Benchmark before #35330 #35330 1ET CD 1ET LD 2ET CD 2ET LD 4ET CD 4ET LD MAX
49 ARM 32 cores 128 PlaintextPlatform 5,2 ft 4,781,959 4,898,041 5,358,677
50 JsonPlatform 426,570 437,481 446,316 470,719
51 FortunesPlatform 70,159 79,601 65,881 75468 87,001 74,375 87,091
52
53 256 PlaintextPlatform 5,443,043 5,433,406 4,605,489 i 5,347,411 - | 5,662,091
54 JsonPlatform 420,229 462,432
55 FortunesPlatform 73,379 76,414 73,532 85,140
56
57 | 512 PlaintextPlatform 5,143,935 5,644,38 ' 5,453,011 5,937,616
58 | JsonPlatform 425,086 i C 4 460,038
59 FortunesPlatform 80,027 650,200 75,948 3 86,416
60
61: 1,024 PlaintextPlatform 5,289,294 5,485,081 5,495,414 5,833,511 E 5,913,468
62 JsonPlatform ; 432,101 467,338
63 FortunesPlatform 50,92 54,847 55,797 61,679
64
65_ 20,000 PlaintextPlatform 4,589,044 4,522 555 4,606,430 4,584,374 4,478,308 4,826,834
66 JsonPlatform 294,565 316,978 289,399 299,867 358,134
67 FortunesPlatform 44,415 46,665 61,568

Having a single epoll thread, no matter what dictionary we use gives us a lot of red color (except the case with 20k connections).

There is no obvious dependency between the number of connections and the number of threads (like the more connections the
more threads we need). If we take a look at the numbers before our changes it looks like this machine is struggling to scale up when
the number of connections grows (JSON numbers are: 470->455->425->350->246).

This requires an independent investigation.

Using 4 epoll threads gives us more improvements than using two. There is only one regression: JSON using 128 connections.
Again, | think that for this number of Cores we should optimize for many connections and | hope that this is acceptable.

a single buffer to improve performance

L) Conversation 19 Commits Checks 130 Files changed 10

Member

' tmds commented on 13 May

This is for benchmarking to see if using syscalls that accept a single buffer has a measurable impact on performance.

recvmsg ->recv
sendmsg -> send

https://github.com/dotnet/runtime/pull/36371

O ooy AW N -

RO O R DO RO R R R
o @ N AW N = O

36371: Try using socket syscalls that accepts

A B C D E F
Machine Connections Benchmark before after ratio
Citrine 28 cores 512 PlaintextPlatform 9,311,240 9,358,872 0.51%

JsonPlatform 1,149,483 1,180,958 2.74%
FortunesPlatform 311,110 318,603 2.41%
Fortunes Batching 418,096 415,193 -0.69%
Perf 12 cores 512 PlaintextPlatform 5,750,630 5,888,939 2.41%
JsonPlatform 553,999 575,528 3.89%
FortunesPlatform 127,190 130,225 2.39%
Mono 56 cores 512 PlaintextPlatform 6,948,232 6,934,850 -0.19%
JsonPlatform 1,177,622 1,162,769 -1.26%
AMD 46 cores 512 JsonPlatform 667,898 670,767 0.43%
FortunesPlatform 240,173 262,262 9.20%

https://github.com/dotnet/runtime/pull/36371

#36635: |s it possible to optimize JSON serialization any further?

s adamsitnik commented on 18 May Member @ ' stephentoub commented on 19 May Member @ -+
. . . P If the simplifyi: ti hat Utf8. iter i imized as it hat ial t it for i
We are working on improving our position in the TechEmpower JSON benchmark. we maﬁe he sumpi |fy|.ng assumptions that Utf8)sonWriter is as optimized as i c.aln be and t! a. Jsanena izer must use it for its
JSON writing, there's still some measurable overhead that could be reduced, but it's not the majority:

Our recent changes in the networking stack allowed us to improve the throughput by +20%. But we are slowly getting to the point

where we won't be able to optimize it any further and we are looking for some other places that could be improved. using BenchmarkDotNet.Attributes;

using BenchmarkDotNet.Running;
using System.Buffers;

Naturally, one of them can be JSON serialization itself. using System.Text.Json;
As of today, we are spending +- 4.6% of the total CPU time for the JSON serialization in the JSON benchmark. 1% of CPU time ["e"'f_’fyf’iiﬂ'mer]
translates to circa 10 thousand requests per second. :”bl" Eia8s Proe

static void Main(string[] args) => Benchmarkswitcher.Fromissemblies(new[] { typeof(Program).Assembly }).Run(args);
@steveharter Could you please take a look at the breakdown below and see if there is anything that we could improve?
private static readonly JsonSerializerOptions SerializerOptions = new JsonSerializerOptions();

The breakdown: private static readonly ArrayBufferWriter<byte> Writer = new ArrayBufferWriter<byte>();

public struct JsonMessage

o mer m ar pns e
o —— L
XD T public string message { get; set; }
i e ¥
= e [Benchmark]
public void Serialize()
. {
wWriter.Clear();
using (var utf8JsonWriter = new Utf8JsonWriter(mWriter))
JsonSerializer.Serialize(utf8JsonWiriter, new JsonMessage { message = “Hello, World!" }, SerializerOptions);
}
£ }
Sy 5 : [Benchmark]
— T T : : Jmes :
ik it rrey = public void Write()
T — 3 e . ‘ {
e I Writer.Clear();
- o - using (var utf8JsonWriter = new Utf8JsonWriter(Writer))
{

var message = new JsonMessage { message = "Hello, World!" };
utf8lsonWriter.Writestartobject();
utf8lsonkiriter.WriteString("message”, message.message);
utf8)sonWriter.WriteEndobject();

}
i
}
Method Mean Error StdDev Gen0 Genl Gen2 Allocated
Serialize 199.1ns 068ns 060ns 00229 - - 1448
Write 1260 ns 1.88 ns 167 ns 0.0191 = - 1208

https://github.com/dotnet/runtime/issues/36635

https://github.com/dotnet/runtime/issues/36635

#1519: try Suggestion from Stephen and use Write methods directly

using (Utf8JsonWriter utf8JsonWriter = new Utf8JsonWriter(writer.Output))

{
JsonSerializer.Serialize<JsonMessage>(utf8JsonWriter, new JsonMessage { message = "Hello, World!"™ }, SerializerOptions);
var message = new JsonMessage { message = "Hello, World!"™ };
utf8JsonWriter.WriteStartObject();
utf8JsonWriter.WriteString("message"”, message.message);
utf8JsonWriter.WriteEndObject();
¥

https://github.com/aspnet/Benchmarks/pull/1519

https://github.com/aspnet/Benchmarks/pull/1519

adamsitnik commented on 19 May

@stephentoub +20k in JSON!

Before:

RequestsPerSecond:
Max CPU (%):
WorkingSet (MB):
Avg. Latency (ms):
Startup (ms):

First Request (ms):
Latency (ms):

Total Requests:
Duration: (ms)
Socket Errors:

Bad Responses:
Build Time (ms):
Published Size (KB):
SDK :

Runtime:

ASP.NET Core:

After:

RequestsPerSecond:
Max CPU (%):
WorkingSet (MB):
Avg. Latency (ms):
Startup (ms):

First Request (ms):
Latency (ms):

Total Requests:
Duration: (ms)
Socket Errors:

Bad Responses:
Build Time (ms):
Published Size (KB):
SDK :

Runtime:

With dotnet/runtime#36371

RequestsPerSecond:

1,149,856

929

497

1

1%

31.96

8.12

17,362,051

15,100

]

-]

4,001

102,238
5.0.108-preview.5.20264.2
5.0.@-preview.6.20262.14
5.0.@-preview.5.20255.6

1,171,304

108

4180

9.86

202

31.5

2.1

17,686,603

15,180

2]

]

4,001

102,238
5.0.100-preview.5.20264.2
5.8.8-preview.6.208262.14

1,203,964

stephentoub commented on 19 May

Does this violate the TE spec?
"A JSON serializer must be used to convert the object to JSON."

adamsitnik commented on 19 May

"A JSON serializer must be used to convert the object to JSON."

It does. 1200k looks tempting, but | am afraid | should close this issue.

@ i adamsitnik closed this on 19 May

#1520: Cache
U thJ SON Wr | te I [Threadstatic]

private static Utf8lsonWriter t_writer;

private static void Json(ref BufferWriter<WriterAdapter> writer)

{
writer.Write(_jsonPreamble);
adamsitnik commented on 19 May 1 +28,11 @@ private static void Json(ref BufferWriter<WriterAdapter> writer)
writer.Commit();
Another suggestion from @stephentoub
Utf8JsonWriter utf8]sonWriter = t_writer ??= new Utf8JsonWriter(writer.Output);
L. utf8JsonWriter.Reset(writer.Output);
The gain is on average around +3k RPS
// Body
using (Utf8JsonWriter utf8lsonWriter = new Utf8J]sonWriter(writer.Output))
{
JsonSerializer.Serialize<JsonMessage>(utf8]sonkriter, new JsonMessage { message = "Hello, World!" }, SerializerOptions);
H
JsonSerializer.Serialize<JsonMessage>(utf8JsonWriter, new JsonMessage { message = "Hello, World!"™ }, SerializerOptions);
¥

https://github.com/aspnet/Benchmarks/pull/1520

https://github.com/aspnet/Benchmarks/pull/1520

#1547 DB Platform benchmarks microoptimizations

":z adamsitnik commented on 9 Jun « edited ~ Member () -

To tell the long story short:

® remove MySQL support
e use Npgsql types instead of ADO.NET abstractions, this has allowed to get rid of boxing and one extra async call

e since all this benchmarks serialize to JSON, apply the JSON tricks from json benchmark to db benchmarks

Machine Benchmark before after ratio
Citrine 28 cores Fortunes 330,403 341,120 3.24%
Fortunes Multiplexing 406,303 420,724 3.55%
Updates 17.223 17.2M 0.28%
Updates Multiplexing 16,457 17,597 6.93%
Single Query 366,911 382,301 4.19%
Single Query Multiplexing 411,250 434,686 5.70%
Multiple Queries 37,857 39,878 5.34%
Multiple Queries Multiplexing 23,192 24,551 5.86%

https://github.com/aspnet/Benchmarks/pull/1547

https://github.com/aspnet/Benchmarks/pull/1547

#37976: Perf improvements for small or value-type

steveharter commented on 16 Jun « edited by richlander « Member (2 -:-

For a TechEmPower benchmark which uses a one-property struct, this shows a ~1.2x serialization improvement during serialization.

Note a value-type (struct) POCO is not common and should only be used when there are very few properties -- instead a POCO

should be a reference-type (class).

Fixes #36635

Summary of changes:

Add a LRU cache before the dictionary access that returns the metadata for the root type being (de)serialized. This is the
biggest savings for small POCOs; larger POCOs are not affected since the dictionary access becomes insignificant compared to
the rest of the work. Also this LRU helps most when there is low concurrency (few threads) or the same type is being repeatedly
(de)serialized.

In internal code, pass the value types using in to avoid unnecessary copies. The more serializable properties a value-type
contains, the bigger the savings.

Optimize property writes to include the quotes and colon as suggested by @Tornhoof. This also allowed for some
AggressiveInlining fast-path changes to since the code path is now internal and specific to this optimization.

Other AggressiveInlining changes. Both added and removed. The crossgen size of ST).dll is now 15K smaller (1071K to
1056K).

Property lookup for cache misses (due to case-insensitivity or different property ordering across JSON payloads for a given
Type) is faster since the length is now embedded into the ulong key avoiding calls to SequenceEquals() when the length is
different. This doesn't affect the TechEmPower scenarios.

Other smaller misc changes.

» Click to expand for benchmarks

» Click to expand for temporary TechEmpower benchmark

https://github.com/dotnet/runtime/pull/37976

POCOs

https://github.com/dotnet/runtime/pull/37976

Many JSON microbenchmarks have improved!

1600 - System.Text.Json.Serialization.Tests.WriteJson<Location>.SerializeToStream
n
=
=
=]
2
- %
1400 g 1200
=
=4
| 5
2 1150
w
=
.]
1200 w
& 1160
[=]
=4
=]
T Juon9 Jun1l Jun13 Jun 15 Jun 17 Jun 19 Jun21 Jun23 Jun 25
- e . g 2020
Jan 2020 Mar 2020 May 2020 Jul 2020 2

https://pvscmdupload.blob.core.windows.net/reports/allTestHistory%2frefs%2fheads%2fmaster x64 Window
$9%2010.0.18362%2fSystem.Text.Json.Serialization.Tests.WriteJson(Location).SerializeToStream.html

https://pvscmdupload.blob.core.windows.net/reports/allTestHistory%2frefs%2fheads%2fmaster_x64_Windows%2010.0.18362%2fSystem.Text.Json.Serialization.Tests.WriteJson(Location).SerializeToStream.html
https://pvscmdupload.blob.core.windows.net/reports/allTestHistory%2frefs%2fheads%2fmaster_x64_Windows%2010.0.18362%2fSystem.Text.Json.Serialization.Tests.WriteJson(Location).SerializeToStream.html

June 2020: we have met the goals!

JsonPlatform Fortunes Raw

2.0 vs 3.1

5.0 vs 3.1

356,67
097 (+23/4 %)

5.0 vs TE 10th

356,67
6,000 %)

.NET vs Netty

2933: Multiplexing

=\
G,‘ roji commented on 31 May - edited by Brar « Member (2) -

OK, this is finally in a state where | think it's OK to review and hopefully merge soon.

Most of the comments in #2852 are still valid, so it's probably a good idea to look at them first.

While #2852 was unsafe in various ways, I've done a lot of work around safety, and hopefully haven't missed anything

important.

e | really recommend filtering by commit when reviewing. There are some commits before multiplexing which simply rewrite the
pool using Channels, without any lock-free code. The last commit is where multiplexing occurs.

® For multiplexing, the "entry point" is in NpgsglCommand.ExecuteReaderAsync. If multiplexing is on, we simply enqueue to the
pool's command channel and wait. The main bulk of the actual multiplexing write logic is in ConnectorPool.Multiplexing.cs. The
read logic is in NpgsglConnector.ReadLoop. Between these three you should get a pretty good idea of what's happening.

e Note that we have a safe "over-capacity” mode; if all connections are in use (Max Poal Size), we still continue to push
commands down the pipe. This is the only place which requires some basic lock-free techniques, but nothing as complex as
what we used to have. Hopefully it's safe - I'd appreciate a good look at this.

e | ots of tests are still lacking. For now some of the main test suites simply run twice - once in multiplexing, once without. And of

course a lot of manual stress testing was done with the TE Fortunes scenario.

This PR is not 100% complete - some tests are skipped, some stuff is not yet implemented (e.g. keepalive). Also, I'd rather we didn't
discuss nits or refactors at this point - | think it's better to merge this and continue work in separate, self-contained PRs (this work is
just too big to get done in a single PR). So be sparing with your comments if you can)

I'm hoping we can merge this relatively quickly (is one week too aggressive? maybe two?), and release an alpha package on
nuget.org to get some user testing. We're nowhere near releasing, so it's OK for this not to be completely stable yet.

Supercedes #2852

A5 @3 g2 @

https://github.com/npgsal/npgsal/pull/2993

https://github.com/npgsql/npgsql/pull/2993

#1553: Update platform benchmarks to Npgsqgl 5.0.0-alphal

1 roji commented on 17 Jun

And start using multiplexing

<PackageReference Include="Npgsql" Version="4.1.2" />
<PackageReference Include="Npgsql" Version="5.8.0-alphal" />
<PackageReference Include="RedHat.AspNetCore.Server.Kestrel.Transport.Linux" Version="3.0.0-*" />

</ItemGroup>

ienchmarksApps/Kestrel/PlatformBenchmarks/benchmarks.fortunes.yml tj L] Viewed = =+

)enchmarkdbpass;Maximum Pool Size=256;NoResetOnClose=true;Enlist=false;Max Auto Prepare=4

renchmarkdbpass;Maximum Pool Size=256;Enlist=false;Max Auto Prepare=4;Multiplexing=true;Write Coalescing Delay Us=5@@;Write Coalescing Buffer Threshold Bytes=1800

https://github.com/aspnet/Benchmarks/pull/1553

https://github.com/aspnet/Benchmarks/pull/1553

Multiplexing: +59k RPS for Fortunes

Shay Rojansky 6/24 11:54 PM b2
° BTW the Npgsqgl multiplexing results are finally in on the OKR dashboard. | think Seb is working on the older numbers and on a legend to
explain everything, but we're at 415K RPS for Fortunes:

Fortunes Raw

5.0 vs 3.1

415,675
136,%‘1{12129 %)

5.0 vs TE 10th

415

3565000 (+16.8 %)

The Composite Score

’Scoring algorithm
The TPR scoring algorithm is intended to be fairly simple.

Goals for scoring

We have the following goals for scoring hardware performance:

® Make the scores comparable on a per-Round basis. Results from environment A should be comparable to enviranment B as
long as both measured the implementations from the same Round (e.g., Round 19).

® Fairly easy to reproduce by hand.

® Emphasize some tests, de-emphasize others. Specifically, we want to boost the importance of Fortunes and Updates while
decreasing the importance of Single-Query, Multi-Query, and Plaintext. Single-Query and Multi-Query are very similar and
without reducing their importance somewhat, the performance of database querying alone would drive a large portion of
the score. Plaintext is reduced in performance because it's the least "real-world” among our test types.

Note these goals come from both the needs of TPR hardware scoring and compaosite scering for frameworks.

Semi-fixed test type biases

As a result of the goals above, we are tentatively considering the following bias coefficients per test type:

® json: 1

® single query: 0.75
® 20-query: 0.75

& fortunes: 1.5

® updates: 1.25

® plaintext: 0.75

Per-round weights

We will use the official results from our Citrine hardware environment as a "reference” environment. From these official
reference results, we will:

. Filter down to the TPR-tagged frameworks.

o

. Compute an average RPS for each test type

w

Normalize the magnitude of each of the test types to align with the JSON test type. E.g., if the JSON average were 158,800
and the Fortunes average were 18,8e8 , the Fortunes test would be given a normalizing coefficient of 15 (18,808 x 15 =
150,000).

=

. Apply the semi-fixed biases above. Taking the Fortunes example above, the resulting weight for Fortunes would be 15 x
1.5 = 22.5

These per-round weights will be rendered on the results web site, along with a link to a wiki entry (like this one) describing the
scoring algorithm

https://github.com/TechEmpower/FrameworkBenchmarks/wiki/TechEmpower-Performance-Rating-(TPR)#scoring-algorithm

https://github.com/TechEmpower/FrameworkBenchmarks/wiki/TechEmpower-Performance-Rating-(TPR)#scoring-algorithm

“That's insane. 50% improvement from doing
nothing except upgrading .NET”

Ben Adams #BLM @ben_a_adams - 24 wrz eo0
» What's the effect for F# for the upgrade from 3.1 to .NET 5.07 On

@TFBenchmarks upgrading to .NET 5.0 (rc1)

(netcoreapp3.1 => net5.0) looks like it gives a ¢. 50% boost for giraffe @

#fsharp #dotnet /cc @dustinmoris

Best plaintext responses per second, Citrine

Framework Best performance (higher is better)

m giraffe-utfSdirect 1,804,119 | 31 3,771,494 | 50 +48% .
m giraffe 1,661,397 Im=dmetam 2 984,785 sl +56%
Best JSON responses per second, Citrine

Framework Best performance (higher is better)

lgiraffe-uthjson 590,306 | 3 1 982,147 | 5 0 +66%

W giraffe 487,236 [nsdm 710,263 =l +46%
O 6 1 40 ¥ 131 &

3"" Nathan B. Evans voo
,; ’ @nbevans

W odpowiedzi do @ben_a_adams @TFBenchmarks i@dustinmoris

That's insane. 50% improvement from doing nothing
except upgrading .NET

https://twitter.com/nbevans/status/1309135751267987459

https://twitter.com/nbevans/status/1309135751267987459

Not covered

* Multiplexing: https://github.com/npgsal/npgsal/pull/2993
* The Big Experiment: https://github.com/tmds/Tmds.LinuxAsync/

* The things that did not improve perf: AIO & io_uring:
 https://github.com/dotnet/runtime/pull/36980 - AIO
e https://github.com/dotnet/runtime/pull/38747 - reduce syscalls
e https://github.com/axboe/liburing/issues/97 - io_uring

* The scenarios where the performance is far from perfect:
* The “Mono” machine with 56 Cores: 1/3 -> 2/3
* The AMD machine: low RPS despite powerful hardware
* The ARM machine —we don’t know how our competitors perform on ARM
e Updates benchmark - +-30% time spent on waiting for a lock to be released*

https://github.com/npgsql/npgsql/pull/2993
https://github.com/tmds/Tmds.LinuxAsync/
https://github.com/dotnet/runtime/pull/36980
https://github.com/dotnet/runtime/pull/38747
https://github.com/axboe/liburing/issues/97

Questions?

Thank You!

	Slide 1: Our way to TechEmpower wins in .NET 5
	Slide 2: .NET 5
	Slide 3: Benchmarks Specifications
	Slide 4: Plaintext
	Slide 5: JSON
	Slide 6: Single Query
	Slide 7: Multiple Queries
	Slide 8: Caching
	Slide 9: Updates
	Slide 10: Fortunes
	Slide 11: Benchmarks: Summary
	Slide 12: Round 18 (July 2019, .NET Core 3.1): JSON
	Slide 13: Round 18 (July 2019, .NET Core 3.1): Fortunes
	Slide 14: Round 19 (February 2020, .NET Core 3.1): JSON
	Slide 15: Round 19 (February 2020, .NET Core 3.1): Fortunes
	Slide 16: Measure, Measure, Measure
	Slide 17: How to run the benchmarks?
	Slide 18: Alternative: run them locally
	Slide 19: The beginning of a performance investigation
	Slide 20: Maybe Flame Graph can tell us something?
	Slide 21: What if we fold All Threads?
	Slide 22: Can we use Concurrency Visualizer?
	Slide 23: Is there any other tool that we could use?
	Slide 24: How to use it?
	Slide 25: Much better Overview!
	Slide 26: Is GC a problem? No.
	Slide 27: Why do we have few threads that are not 100% active?
	Slide 28: What is epoll?
	Slide 29: Side note: People don’t like epoll
	Slide 30: “The Linux Programming Interface” book
	Slide 31: Reducing the epoll threads to 1
	Slide 32: #2346: 1 epoll thread per 1024 connections
	Slide 33: #19396: Add SocketTransportOption to enable/disable WaitForData
	Slide 34: It was not that simple…
	Slide 35: Why the Platform benchmark has regressed?
	Slide 36: Kount has provided an excellent explanation
	Slide 37: Which started a discussion
	Slide 38: #20518: Is it possible to tune request parsing any further?
	Slide 39: #20885: Make HTTP/1.1 startline parsing "safe"
	Slide 40: #35330: Parallelize epoll events on thread pool and process events in the same thread
	Slide 41: Big wins!
	Slide 42: 2nd PR: Single epoll thread per 28 cores
	Slide 43: How to read the results
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: #36371: Try using socket syscalls that accepts a single buffer to improve performance
	Slide 49: #36635: Is it possible to optimize JSON serialization any further?
	Slide 50: #1519: try Suggestion from Stephen and use Write methods directly
	Slide 51
	Slide 52: #1520: Cache Utf8JsonWriter
	Slide 53: #1547: DB Platform benchmarks microoptimizations
	Slide 54: #37976: Perf improvements for small or value-type POCOs
	Slide 55: Many JSON microbenchmarks have improved!
	Slide 56: June 2020: we have met the goals!
	Slide 57: #2933: Multiplexing
	Slide 58: #1553: Update platform benchmarks to Npgsql 5.0.0-alpha1
	Slide 59: Multiplexing: +59k RPS for Fortunes
	Slide 60: The Composite Score
	Slide 61: “That's insane. 50% improvement from doing nothing except upgrading .NET”
	Slide 62: Not covered
	Slide 63: Questions?
	Slide 64: Thank You!

